A Cu/Zn superoxide dismutase gene from Saussurea involucrata Kar. & Kir., SiCSD, enhances drought, cold, and oxidative stress in transgenic tobacco

文献类型: 外文期刊

第一作者: Zhang, L.

作者: Zhang, L.;Sun, L.;Zhang, L.;Qiu, H.;Liu, C.;Wang, A.;Zhu, J.;Deng, F.

作者机构:

关键词: Saussurea involucrata Kar. & Kir.;Cu/Zn-SOD;SiCSD gene;transgenic tobacco;abiotic stress

期刊名称:CANADIAN JOURNAL OF PLANT SCIENCE ( 影响因子:1.018; 五年影响因子:1.242 )

ISSN: 0008-4220

年卷期: 2017 年 97 卷 5 期

页码:

收录情况: SCI

摘要: Superoxide dismutase (SOD) plays an important role in the stress tolerance of higher plants. In the present study, a novel Cu/Zn-SOD gene, SiCSD (accession no. KC912564), was cloned from Saussurea involucrata Kar. & Kir. The deduced amino acid sequence shared 85% identity with Cu/Zn-SOD of Solanum tuberosum L. and Solanum lycopersicum L. Quantitative real-time polymerase chain reaction showed that SiCSD was upregulated by treatments with cold, drought, and oxidative stresses. SiCSD transgenic tobacco plants improved tolerance to drought, freezing, and oxidative stresses and exhibited a higher survival rate, relative water content, photosynthesis efficiency, and higher activities of SODs, catalases, and ascorbate peroxidase, but lower ion leakage and malondialdehyde contents compared with the wild type. These data demonstrate that SiCSD may act as a positive regulator in drought and cold stress by reducing oxidant injury.

分类号:

  • 相关文献

[1]Isolation and characterization of BnMKK1 responsive to multiple stresses and affecting plant architecture in tobacco. Yu, Shunwu,Chen, Chen,Li, Jiajia,Ye, Shuifeng,Liu, Guolan,Mei, Xiaohan,Luo, Lijun,Zhang, Lida,Tang, Kexuan.

[2]Molecular and functional characterization of the JcMYB1, encoding a putative R2R3-MYB transcription factor in Jatropha curcas. Li, Hui-Liang,Guo, Dong,Peng, Shi-Qing.

[3]MaRING2: A Positive Regulator of an Abscisic Acid-dependent Response to Cold Stress from Banana Fruit. Chen, Jiao,Yuan, De-bao,Wang, Chao-zheng,Li, Yi-xing,Li, Fen-fang,Hong, Ke-qian,Lu, Wang-jin.

[4]The role of Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and pathogen challenge in the clam Meretrix meretrix. Lu, Xia,Wang, Chao,Liu, Baozhong.

[5]Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. Guo, Shang-Jing,Zhou, Hai-Yan,Zhang, Xian-Sheng,Li, Xin-Guo,Meng, Qing-Wei. 2007

[6]Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco. Zhang, Song,Wang, Guo-Dong,Kong, Fan-Ying,Meng, Chen,Deng, Yong-Sheng.

[7]Identification and differential expression of two isogenes encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase in Glycine max. Zhang, Man,Li, Kai,Liu, Jianyu,Yu, Deyue,Zhang, Man. 2012

[8]Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Bie, Xiaomin,Wang, Ke,She, Maoyun,Du, Lipu,Zhang, Shuangxi,Gao, Xiang,Lin, Zhishan,Ye, Xingguo,Bie, Xiaomin,Zhang, Shuangxi,Li, Jiarui. 2012

[9]Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Liu, Hongxia,Zhou, Xianyao,Dong, Na,Liu, Xin,Zhang, Zengyan,Zhou, Xianyao,Zhang, Huaiyu.

[10]Transgenic tobacco expressing an Arisaema heterophyllum agglutinin gene displays enhanced resistance to aphids. Yao, JH,Zhao, XY,Qi, HX,Wan, BL,Chen, F,Sun, XF,Yu, SQ,Tang, KX. 2004

[11]Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing. Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Wang, Xue-Chen,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng.

[12]Evaluation of transgenic tobacco expressing two insecticidal genes to delay resistance development of Helicoverpa armigera. Fan, YL,Fan, XL,Shi, XP,Lu, MG.

[13]Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Tang, G. Y.,Xu, P. L.,Shan, L.,Shao, F. X.,Liu, Z. J..

[14]Ectopic expression of peanut acyl carrier protein in tobacco alters fatty acid composition in the leaf and resistance to cold stress. Tang, G. -Y.,Liu, Z. -J.,Bi, Y. -P.,Shan, L.,Tang, G. -Y.,Liu, Z. -J.,Bi, Y. -P.,Shan, L.,Tang, G. -Y.,Liu, Z. -J.,Bi, Y. -P.,Shan, L.,Wei, L. -Q..

[15]Isolation and functional characterisation of CDPKs gene from Arachis hypogaea under salt stress. Li, Yan,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Li, Yan,Wan, Shu-Bo,Fang, Feng,Xia, Guang-Min.

[16]Peanut violaxanthin de-epoxidase alleviates the sensitivity of PSII photoinhibition to heat and high irradiance stress in transgenic tobacco. Yang, Sha,Meng, De-Yun,Hou, Lin-Lin,Li, Yan,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Wan, Shu-Bo,Meng, De-Yun,Hou, Lin-Lin.

[17]Overexpression of an MYB-Related Gene FvMYB1 from Fraxinus velutina Increases Tolerance to Salt Stress in Transgenic Tobacco. Li, Tian,Sun, Jingkuan,Bi, Yuping,Peng, Zhenying.

[18]Overexpression of SoCYP85A1, a Spinach Cytochrome p450 Gene in Transgenic Tobacco Enhances Root Development and Drought Stress Tolerance. Duan, Fangmeng,Song, Wenwen,Ding, Jun,Feng, Yuqi,Lee, Dongsun,Lu, Xueli,Feng, Yuqi. 2017

[19]Oral immunization of mice with plant-derived fimbrial adhesin FaeG induces systemic and mucosal K88ad enterotoxigenic Escherichia coli-specific immune responses. Liang, WQ,Huang, YH,Yang, XH,Zhou, Z,Pan, AH,Qian, BJ,Huang, C,Chen, JX,Zhang, DB. 2006

[20]Chloroplast-targeted expression of the codon-optimized truncated cry1Ah gene in transgenic tobacco confers a high level of protection against insects. Huang, Dafang,Li, Xiuying,Li, Shengyan,Lang, Zhihong,Zhu, Li,Huang, Dafang,Li, Shengyan,Zhang, Jie. 2013

作者其他论文 更多>>