Optimization of Informative Spectral Regions in FT-NIR Spectroscopy for Measuring the Soluble Solids Content of Apple

文献类型: 外文期刊

第一作者: Wang, Jiahua

作者: Wang, Jiahua;Liu, Haiying;Cheng, Jingjing;Cheng, Jingjing;Tang, Zhihui;Han, Donghai

作者机构:

关键词: Non-destructive determination;Informative region selection;Linear combination weight PLS;Apple;FT-NIR spectroscopy;Soluble solids content

期刊名称:INTELLIGENT AUTOMATION AND SOFT COMPUTING ( 影响因子:1.647; 五年影响因子:1.469 )

ISSN: 1079-8587

年卷期: 2015 年 21 卷 3 期

页码:

收录情况: SCI

摘要: A novel potential method, linear combination weight PLS (LCW-PLS) model, was suggested for improving the performance of routine PLS model based on selected informative regions. Moving window partial least squares (MWPLS), genetic algorithms interval partial least squares (GAiPLS) and synergy interval partial least squares (SiPLS) were used to optimize informative spectral regions from FT-NIR spectra. A total of 660 apples harvested at 2006, 2007 and 2008, were divided into calibration and prediction sets by Kennard-Stone method. The best calibration model was obtained by LCW-PLS method based on informative spectral regions of 4328-4787, 5323-5512, 5982-7135 and 7159-7463cm(-1) selected by MWPLS procedure, and corresponding weights of 0.004, 0.070, 0.066 and 0.860, respectively. The LCW-MWPLS model was applied to predict samples, the prediction results were with R-P of 0.942, RMSEP of 0.649 %Brix and RPDP of 3.10. In addition, developed LCW-MWPLS model using random two years samples was used to predict one year samples excluded. The predictive results were with R-P of 0.921-0.927, RMSEP of 0.714-0.795 %Brix and RPDP of 2.44-2.88. The LCW-MWPLS model giving a prediction error equal to 4% of fresh weight was sufficiently accurate to determine the SSC of apple non-destructively.

分类号:

  • 相关文献

[1]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[2]Temperature Compensation for Portable Vis/NIR Spectrometer Measurement of Apple Fruit Soluble Solids Contents. Li Yong-yu,Wang Jia-hua,Qi Shu-ye,Tang Zhi-hui,Jia Shou-xing. 2012

[3]Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi.

[4]Application of Characteristic NIR Variables Selection in Portable Detection of Soluble Solids Content of Apple by Near Infrared Spectroscopy. Fan Shu-xiang,Zhao Chun-jiang,Fan Shu-xiang,Huang Wen-qian,Li Jiang-bo,Guo Zhi-ming,Zhao Chun-jiang. 2014

[5]Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng.

[6]Using Vis/NIR Diffuse Transmittance Spectroscopy and Multivariate Analysis to Predicate Soluble Solids Content of Apple. Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang.

[7]Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Liu, Changhong,Chen, Wei,Zheng, Lei,Liu, Wei,Yang, Jianbo,Zheng, Lei.

[8]Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics. Liu, Wei,Liu, Changhong,Hu, Xiaohua,Yang, Jianbo,Zheng, Lei,Liu, Wei,Yang, Jianbo,Zheng, Lei.

[9]Non-destructive determination of total polyphenols content and classification of storage periods of Iron Buddha tea using multispectral imaging system. Xiong, Chuanwu,Liu, Changhong,Pan, Wenjuan,Ma, Fei,Xiong, Can,Zheng, Lei,Qi, Li,Chen, Feng,Lu, Xuzhong,Yang, Jianbo,Zheng, Lei.

[10]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

[11]Characteristic Wavelengths Selection of Soluble Solids Content of Pear Based on NIR Spectral and LS-SVM. Fan Shu-xiang,Zhao Chun-jiang,Fan Shu-xiang,Huang Wen-qian,Li Jiang-bo,Zhao Chun-jiang,Zhang Bao-hua. 2014

[12]Near-Infrared Spectra Combining with CARS and SPA Algorithms to Screen the Variables and Samples for Quantitatively Determining the Soluble Solids Content in Strawberry. Li Jiang-bo,Guo Zhi-ming,Huang Wen-qian,Zhang Bao-hua,Zhao Chun-jiang. 2015

[13]Assessment of Influence Detective Position Variability on Precision of Near Infrared Models for Soluble Solid Content of Watermelon. Qian Man,Fan Shu-xiang,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping. 2016

[14]Prediction of Soluble Solids Content and Firmness of Pears Using Hyperspectral Reflectance Imaging. Fan, Shuxiang,Huang, Wenqian,Guo, Zhiming,Zhang, Baohua,Zhao, Chunjiang,Fan, Shuxiang,Zhao, Chunjiang.

[15]A comparative study for the quantitative determination of soluble solids content, pH and firmness of pears by Vis/NIR spectroscopy. Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang,Zhang, Baohua.

[16]Variable Selection in Visible and Near-Infrared Spectral Analysis for Noninvasive Determination of Soluble Solids Content of 'Ya' Pear. Li, Jiangbo,Huang, Wenqian,Chen, Liping,Fan, Shuxiang,Zhang, Baohua,Guo, Zhiming,Zhao, Chunjiang,Li, Jiangbo.

[17]Feasibility of SSC Prediction for Navel Orange Based on Origin Recognition Using NIR Spectroscopy. Lyu, Qiang,Liao, Qiuhong,Liu, Yanli,Lyu, Qiang,Lan, Yubin. 2015

[18]Genetic analysis of wild apple resources in Shandong province based on inter-simple sequence repeats (ISSR) and sequence-specific amplification polymorphism (S-SAP) markers. He, Ping,Li, Linguang,Li, Huifeng,Wang, Haibo,Yang, Jianming,Wang, Yuxia. 2011

[19]Differential expression and modification of proteins during ontogenesis in Malus domestica. Cao, Xin,Gao, Yan,Wang, Yi,Han, Zhen H.,Zhang, Xin Z.,Li, Chun M.,Zhao, Yong B.. 2011

[20]A bi-layer model for nondestructive prediction of soluble solids content in apple based on reflectance spectra and peel pigments. Huang, Wenqian. 2018

作者其他论文 更多>>