Research of Influence Factors on Spectral Recognition for Cotton Leaf Infected by Verticillium wilt

文献类型: 外文期刊

第一作者: Chen Bing

作者: Chen Bing;Wang Fang-yong;Han Huan-yong;Liu Zheng;Chen Bing;Xiao Chun-hua;Zou Nan

作者机构:

关键词: Cotton;Disease stress;Spectra recognition;Measure method;Influence factors

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2014 年 34 卷 3 期

页码:

收录情况: SCI

摘要: Through carrying out spectral test experiment, the influence factors of spectrum test were analyzed, the influence degree of various factors in spectral recognition was explicated and the method of spectra test was optimized for cotton leaf infected by verticillium wilt. The results indicated that under different severity levels, the shape and value of reflectance of disease symptoms part were Significantly higher than healthy part on cotton leaf, compared with the black board as baseboard, the spectral values of disease leaves were slightly higher in visible light wavebands and significantly higher in others wavebands than healthy leaves on white baseboard. Different position of leaf on cotton plant has different effect degree to the recognition of disease, the effect of stem leaf was more obvious than that of else leaf, the identical leaf position was less influenced by disease than that of others. The effect of healthy leaf was smaller than disease leaf. The reflectance of leaf back was higher than front in visible light waveband, from high to flat, and then low in near infrared waveband, and from high to low to in short infrared waveband. Test time and cotton varieties had less influence on recognizing disease by spectra, and the effect of the same condition was acceptable. Test site had no effect on disease recognition by spectra. The effect of each factor was different for recognizing disease leaf by spectra, and this study will provide reference for the researchers of crop disease diagnosis by spectra.

分类号:

  • 相关文献

[1]Study on Hyperspectral Estimation of Pigment Contents in Leaves of Cotton Under Disease Stress. Chen Bing,Li Shao-kun,Wang Ke-ru,Wang Fang-yong,Xiao Chun-hua,Pan Wen-chao,Chen Bing,Li Shao-kun,Wang Ke-ru,Wang Fang-yong. 2010

[2]Analysis of the Main Factors of Vegetable Circulation Efficiency in Beijing Based on the Analytic Hierarchy Process. Jiang Peng,Zhou Liandi,Ren Aisheng. 2013

[3]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[4]A simplified pruning method for profitable cotton production in the Yellow River valley of China. Dai, Jianlong,Luo, Zhen,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Lu, Hequan,Li, Zhenhuai,Xin, Chengsong,Kong, Xiangqiang,Eneji, A. Egrinya,Dong, Hezhong.

[5]Dry mycelium of Penicillium chrysogenum induces expression of pathogenesis-related protein genes and resistance against wilt diseases in Bt transgenic cotton. Chen, Suiyun,Dong, Hezhong,Fan, Yuqin,Li, Weijiang,Cohen, Yigal. 2006

[6]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[7]Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Chen, Yizhen,Dong, Hezhong,Chen, Yizhen,Kong, Xiangqiang,Dong, Hezhong,Kong, Xiangqiang,Dong, Hezhong. 2018

[8]An Improved CTAB-Ammonium Acetate Method for Total RNA Isolation from Cotton. Ding, Qi,Zeng, Jun,He, Xin-Qiang,Zhao, Lu,Fan, Shou-Jin,Wang, Fu-Rong,Zhang, Jun. 2012

[9]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[10]Dry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditions. Dong, HZ,Zhang, XK,Choen, Y,Zhou, Y,Li, WJ,Li, ZH. 2006

[11]Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Zhang, Dongmei,Li, Weijiang,Xin, Chengsong,Tang, Wei,Eneji, A. Egrinya,Dong, Hezhong,Eneji, A. Egrinya. 2012

[12]IMPROVED NUTRIENT UPTAKE ENHANCES COTTON GROWTH AND SALINITY TOLERANCE IN SALINE MEDIA. Dai, J. L.,Duan, L. S.,Dong, H. Z.,Dai, J. L.. 2014

[13]Unequal salt distribution in the root zone increases growth and yield of cotton. Dong, Hehzong,Kong, Xianggiang,Luo, Zhen,Li, Weijiang,Xin, Chengsong. 2010

[14]Genetic improvement of cotton tolerance to salinity stress. Ma, Xinrong,Dong, Hezhong,Li, Weijiang,Ma, Xinrong. 2011

[15]Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Dong, Hezhong,Kong, Xiangqiang,Li, Weijiang,Tang, Wei,Zhang, Dongmei. 2010

[16]Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. Kong, Xiangqiang,Luo, Zhen,Dong, Hezhong,Eneji, A. Egrinya,Li, Weijiang,Eneji, A. Egrinya. 2012

[17]Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Dong, Hezhong,Li, Weijiang,Zhang, Dongmei,Dong, Hezhong,Niu, Yuehua. 2008

[18]Genetic fine mapping and candidate gene analysis of the Gossypium hirsutum Ligon lintless-1 (Li1) mutant on chromosome 22(D). Yurong Jiang,Mingquan Ding,Yuefen Cao,Fen Yang,Hua Zhang,Shae He,Huaqin Dai,Huanfeng Hao,Junkang Rong.

[19]Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Lu Feng,Jianlong Dai,Dong, Hezhong,Liwen Tian,Huijun Zhang,Weijiang Li,Hezhong Dong.

[20]A Genome-Scale Analysis of the PIN Gene Family Reveals Its Functions in Cotton Fiber Development. Yuzhou Zhang,Peng He,Zuoren Yang,Xiao, Guanghui,Yu, Jianing,Gai Huang,Limin Wang,Chaoyou Pang,Hui Xiao,Peng Zhao,Jianing Yu,Guanghui Xiao. 2017

作者其他论文 更多>>