Porcine Viperin protein inhibits the replication of classical swine fever virus (CSFV) in vitro

文献类型: 外文期刊

第一作者: Li, Wenliang

作者: Li, Wenliang;Mao, Li;Yang, Leilei;Hao, Fei;Zhang, Wenwen;Jiang, Jieyuan;Cao, Yongguo;Zhou, Bin;Han, Linxiao;Lin, Tao

作者机构:

关键词: Viperin;CSFV;Antiviral;Co-localization;Interaction

期刊名称:VIROLOGY JOURNAL ( 影响因子:4.099; 五年影响因子:3.719 )

ISSN: 1743-422X

年卷期: 2017 年 14 卷

页码:

收录情况: SCI

摘要: Background: Classical swine fever virus (CSFV) is the causative pathogen of Classical swine fever (CSF), a highly contagious disease of swine. Viperin is one of the hundreds of interferon-stimulated genes (ISGs), and possesses a wide range of antiviral activities. The aim of this study was to explore whether porcine Viperin has the anti-CSFV activity. Method: The influences of CSFV infection on Viperin expression and Newcastle disease virus (NDV)/Pseudorabies virus (PRV)-induced Viperin expression were examined in 3D4/21 cells and porcine peripheral blood mononuclear cells (PBMCs). Porcine Viperin gene was amplified to generate cell line PK-Vi over-expressing Viperin. CSFV was inoculated in the cell lines and viral load was detected by qRT-PCR, virus titration and Western blot. The influence of Viperin expression on CSFV binding, entry and release in the cells was also examined. The co-localization of Viperin with CSFV and its proteins (E2, NS5B) was determined by confocal laser scanning microscopy test. Co-IP assay was performed to check the interaction of Viperin with CSFV proteins. Results: CSFV infection could not induce Viperin expression in vitro while significantly inhibiting NDV/PRV-induced Viperin expression at 12, 24 and 48 h post infection (hpi; P < 0.05). The proliferation of CSFV in PK-Vi was significantly inhibited at 24, 48 and 72 hpi (P < 0.05), comparing with control cells (PK-C1 expressing EGFP). Virus in both cell culture supernatants and cell pellets were reduced equally. CSFV binding and entry in the cells were not interfered by Viperin expression. These results indicated its anti-CSFV function occurred during the genome and/or protein synthesis step. Confocal laser scanning microscopy test showed the Viperin-EGFP protein co-localized with CSFV E2 protein in CSFV infected PK-Vi cells. Further experiments indicated that Viperin protein co-localized with E2 and NS5B proteins of CSFV in the transfected 293 T cells. Furthermore, Co-IP assay confirmed the interaction of Viperin with E2 protein, but not NS5B. Conclusion: Porcine Viperin effectively inhibited CSFV replication in vitro, potentially via the interaction of Viperin with CSFV E2 protein in cytoplasm. The results provided foundation for further studies of the interaction of Viperin with CSFV and other viruses.

分类号:

  • 相关文献

[1]LiCl inhibits PRRSV infection by enhancing Wnt/beta-catenin pathway and suppressing inflammatory responses. Hao, Hong-ping,Li, Jia-rong,Wang, Yue,Ni, Bo,Wang, Rui,Wang, Xin,Sun, Ming-xia,Fan, Hong-jie,Mao, Xiang,Wen, Li-bin,Fan, Hong-jie. 2015

[2]Nitazoxanide inhibits the replication of Japanese encephalitis virus in cultured cells and in a mouse model. Shi, Zixue,Wei, Jianchao,Deng, Xufang,Qiu, Yafeng,Shao, Donghua,Li, Beibei,Zhang, Keyu,Xue, Feiqun,Ma, Zhiyong,Li, Shuqing,Wang, Xiaodu. 2014

[3]Lentivirus-mediated RNA interference against Japanese encephalitis virus infection in vitro and in vivo. Shen, Ting,Cao, Ruibing,Zhou, Bin,Chen, Puyan,Liu, Ke,Miao, Denian.

[4]Investigation on the co-infections of Toxoplasma gondii with PRRSV, CSFV or PCV-2 in swine in part of China. Wang Shuai,Zhang Meng,Liu Xin-chao,Lin Tao,Zhao Guang-wei,Ia Hassan,Yan Ruo-feng,Song Xiao-kai,Li Xiang-rui,Yang Han-chun,Lin Tao,Yuan Shi-shan. 2015

[5]Atypical Classical Swine Fever Infection Changes Interleukin Gene Expression in Pigs. Sun, Y. K.,Sun, Y. K.,Zhang, X. M.,Du, M.,Li, Y. X.,Pan, H. B.,Yan, Y. L.,Yang, Y. A..

[6]Antigenic differentiation of classical swine fever viruses in China by monoclonal antibodies. Zhu, Yan,Shi, Zixue,Guo, Huanchen,Tu, Changchun,Drew, Trevor W.,Wang, Qin,Qiu, Huaji. 2009

[7]A multiplex RT-PCR for rapid and simultaneous detection of porcine teschovirus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. Liu, Shanshan,Hu, Quanbo,Zhang, Chaofan,Hu, Feng,Lin, Wencheng,Cui, Shangjin,Zhao, Yarong,Lv, Chaochao,Zhao, Rui. 2011

[8]Differential Diagnosis of Antibody to Classical Swine Fever Virus Field Strain by ELISA with Recombinant E2 Proteins of Various Group CSFV. Qiu Chang-Qing,Hu Hui,Cao Xiao-An,Zhou Ji-Zhang,Lin Guo-Zhen,Hu Hui. 2008

[9]Viroporin activity and membrane topology of classic swine fever virus p7 protein. Guo, Hui-Chen,Sun, Shi-Qi,Sun, De-Hui,Wei, Yan-Quan,Xu, Jin,Liu, Xiang-Tao,Liu, Zai-Xin,Luo, Jian-Xiong,Yin, Hong,Liu, Ding Xiang,Guo, Hui-Chen,Sun, Shi-Qi,Sun, De-Hui,Wei, Yan-Quan,Xu, Jin,Liu, Xiang-Tao,Liu, Zai-Xin,Luo, Jian-Xiong,Yin, Hong,Liu, Ding Xiang,Huang, Mei,Liu, Ding Xiang.

[10]Development and partial validation of a recombinant E2-based indirect ELISA for detection of specific IgM antibody responses against classical swine fever virus. Li, Wenliang,Mao, Li,Yang, Leilei,Jiang, Jieyuan,Zhou, Bin. 2013

[11]The swine CD81 enhances E2-based DNA vaccination against classical swine fever. Li, Wenliang,Zhou, Bin,Liu, Xia,Yang, Leilei,Zhang, Wenwen,Jiang, Jieyuan,Zhou, Bin.

[12]Chinese border disease virus strain JSLS12-01 infects piglets and down-regulates the antibody responses of classical swine fever virus C strain vaccination. Mao, Li,Li, Wenliang,Liu, Xia,Hao, Fei,Yang, Leilei,Deng, Jiawu,Zhang, Wenwen,Jiang, Jieyuan,Mao, Li,Li, Wenliang,Liu, Xia,Hao, Fei,Yang, Leilei,Deng, Jiawu,Zhang, Wenwen,Jiang, Jieyuan,Mao, Li,Li, Wenliang,Liu, Xia,Hao, Fei,Yang, Leilei,Deng, Jiawu,Zhang, Wenwen,Jiang, Jieyuan,Liu, Xia,Deng, Jiawu,Wei, Jianzhong.

[13]Effect of Cr(VI) on Fe(III) reduction in three paddy soils from the Hani terrace field at high altitude. Li, Xiao-min,Liu, Tong-xu,Li, Fang-bai,Zhang, Nai-ming,Ren, Guo,Li, Xiao-min,Li, Yong-tao. 2012

[14]Overexpression of OsCIPK30 Enhances Plant Tolerance to Rice stripe virus. Liu, Zhiyang,Li, Xuejuan,Sun, Feng,Zhou, Tong,Zhou, Yijun,Liu, Zhiyang,Li, Xuejuan,Sun, Feng,Zhou, Tong,Zhou, Yijun. 2017

[15]Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?. Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang,Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang. 2016

[16]Mouse hepatitis virus nucleocapsid protein interacts receptor for activated C kinase1, and regulates AKT signal pathway. Zhang, Pengju,Wu, Xinghong,Wang, Jun,Long, Miao. 2017

[17]Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut. Wang, Houmiao,Lei, Yong,Yan, Liying,Wan, Liyun,Ren, Xiaoping,Chen, Silong,Jiang, Huifang,Liao, Boshou,Wang, Houmiao,Lei, Yong,Yan, Liying,Wan, Liyun,Ren, Xiaoping,Chen, Silong,Jiang, Huifang,Liao, Boshou,Dai, Xiaofeng,Guo, Wei. 2016

[18]Nonstructural protein P7-2 encoded by Rice black-streaked dwarf virus interacts with SKP1, a core subunit of SCF ubiquitin ligase. Wang, Qian,Wang, Qian,Tao, Tao,Han, Yanhong,Chen, Xiangru,Fan, Zaifeng,Li, Dawei,Yu, Jialin,Han, Chenggui,Wang, Qian,Tao, Tao,Han, Yanhong,Chen, Xiangru,Fan, Zaifeng,Li, Dawei,Yu, Jialin,Han, Chenggui. 2013

[19]F(0)ATP synthase b-chain of Litopenaeus vannamei involved in White Spot Syndrome Virus infection. Li, Qian,Liu, Qing-hui,Huang, Jie,Li, Qian. 2013

[20]Study on Interaction between Coomassie Brilliant Blue G-250 and Bovine Serum Albumin by Fluorescence Spectroscopy and Molecular Modeling. Wang Yong-gang,Yang Guang-rui,Leng Fei-fan,Ma Jian-zhong,Ma Xue-qing,Wang Xiao-li. 2017

作者其他论文 更多>>