Geographic distance and amorphous iron affect the abundance and distribution of Geobacteraceae in paddy soils in China

文献类型: 外文期刊

第一作者: Yuan, Hai-Yan

作者: Yuan, Hai-Yan;Ding, Long-Jun;Chen, Song-Can;Deng, Ye;Li, Xiao-Ming;Zhu, Yong-Guan;Yuan, Hai-Yan;Chen, Song-Can;Li, Xiao-Ming;Wang, Ning;Deng, Ye;Zhu, Yong-Guan

作者机构:

关键词: Amorphous iron (aFe);Geobacteraceae;Illumina HiSeq sequencing;Iron reduction;Paddy soil

期刊名称:JOURNAL OF SOILS AND SEDIMENTS ( 影响因子:3.308; 五年影响因子:3.586 )

ISSN: 1439-0108

年卷期: 2016 年 16 卷 12 期

页码:

收录情况: SCI

摘要: Purpose Geobacteraceae are important dissimilatory Fe (III)-reducing microorganisms, influencing the cycling of metals, nutrients as well as the degradation of organic contaminants. However, little is known about their distribution, diversity, and abundance of Geobacteraceae and the effects of environment factors and geographic distance on the distribution and diversity of Geobacteraceae in paddy soils remain unclear. Therefore, the objectives of this study were to investigate the distribution, diversity, and abundance of Geobacteraceae in paddy soils and to determine key factors in shaping the Geobacteraceae distribution, environmental factors, geographic distance, or both and to quantify their contribution to Geobacteraceae variation. Materials and methods Illumina sequencing and quantitative real-time PCR using a primer set targeting 16S rRNA genes of bacteria affiliated with the family Geobacteraceae were employed to measure the community composition, diversity, and abundance patterns of 16S rRNA genes of Geobacteraceae in 16 samples collected from north to south of China. MRT, Mantel test, and VPA were used to analyze the relationship between communities of Geobacteraceae and environmental factors and geographic distance. Results and discussion Quantitative PCR showed that the abundance of 16S rRNA genes of Geobacteraceae ranged from (1.20 +/- 0.18)x10(8) to 1.13x10(9)+/- 2.25x10(8) copies per gram of soil (dry weight) across different types of soils. Illumina sequencing results showed Geobacter was the dominant genus within the family of Geobacteraceae. Multivariate regression tree (MRT) analysis showed that soil amorphous iron contributed more (22.46 %) to the variation of dominant species of Geobacteraceae than other examined soil chemical factors such as pH (14.52 %), ammonium (5.12 %), and dissolved organic carbon (4.74 %). Additionally, more geographically distant sites harbored less similar communities. Variance partitioning analysis (VPA) showed that geographic distance contributed more to the variation of Geobacteraceae than any other factor, although the environmental factors explained more variation when combined. So, we detected the uneven distribution of Geobacteraceae in paddy soils of China and demonstrated that Geobacteraceae community composition was strongly associated with geographic distance and soil chemical factors including aFe, pH, Fe, DOC, C: N, and NO3--N. These results greatly expand the knowledge of the distribution of Geobacteraceae in environments, particularly in terrestrial ecosystems. Conclusions Our results showed that geographic distance and amorphous iron played important roles in shaping Geobacteraceae community composition and revealed that both geographic distance and soil properties governed Geobacteraceae biogeography in paddy soils. Our findings will be critical in facilitating the prediction of element cycling by incorporating information on functional microbial communities into current biogeochemical models.

分类号:

  • 相关文献

[1]Effects of flooding and ferrhydrite on copper fractionation in paddy soil. Liu, Beibei,Chen, Xin,Li, Qinfen,Peng, Lixu,Liu, Beibei,Chen, Xin,Li, Qinfen,Peng, Lixu,Liu, Beibei,Chen, Xin,Li, Qinfen,Peng, Lixu,Qu, Dong. 2013

[2]Enhanced nitrate reduction and current generation by Bacillus sp in the presence of iron oxides. Liu, Tongxu,Li, Fangbai,Zhang, Wei,Li, Xiaomin,Zhang, Wei. 2012

[3]Iron Reduction Coupled to Reductive Dechlorination in Red Soil: A Review. Chen, Manjia,Liu, Chengshuai,Li, Xiaomin,Li, Fangbai,Huang, Weilin.

[4]DISTRIBUTION CHARACTERISTICS, BIOACCUMULATION, AND SOURCES OF MERCURY IN RICE AT NANSI LAKE AREA, SHANDONG PROVINCE, CHNIA. Liu, H.,Zhang, J.,Dai, J. L.,Wang, L. H.,Zhang, J.,Li, G. X.. 2015

[5]Effect of Cr(VI) on Fe(III) reduction in three paddy soils from the Hani terrace field at high altitude. Li, Xiao-min,Liu, Tong-xu,Li, Fang-bai,Zhang, Nai-ming,Ren, Guo,Li, Xiao-min,Li, Yong-tao. 2012

[6]Phosphorus Adsorption and Bioavailability in a Paddy Soil Amended with Pig Manure Compost and Decaying Rice Straw. Liang, Yongchao,Guo, Bin,Liang, Yongchao,Li, Zhaojun,Han, Fengxiang. 2009

[7]Oxidation of elemental sulfur in paddy soils as influenced by flooded condition and plant growth in pot experiment. Zhou, W,Wan, M,He, P,Li, ST,Lin, B. 2002

[8]Effect of long-term application of manure and mineral fertilizers on nitrogen mineralization and microbial biomass in paddy soil during rice growth stages. Zhang, J.,Qin, J.,Yao, W.,Bi, L.,Zhang, J.,Yao, W.,Bi, L.,Lai, T.,Yu, X.. 2009

[9]Sorption of Atrazine in Tropical Soil by Biochar Prepared from Cassava Waste. Deng, Hui,Ge, Chengjun,Deng, Hui,Ge, Chengjun,Yu, Huamei,Chen, Miao. 2014

[10]Effects of rice straw incorporation and tillage depth on soil puddlability and mechanical properties during rice growth period. Yao, Shuihong,Teng, Xiaolong,Zhang, Bin.

[11]Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. Wang, Xiangqin,Liu Chuanping,Li, Fangbai,Xu, Xianghua,Lv, Yahui,Zeng, Xiaoduo.

[12]Abundance and Community Composition of Ammonia-Oxidizers in Paddy Soil at Different Nitrogen Fertilizer Rates. Song Ya-na,Lin Zhi-min. 2014

[13]Effects of different fertilizer application methods on the community of nitrifiers and denitrifiers in a paddy soil. Duan, Ran,Su, Shiming,Bai, Lingyu,Zeng, Xibai,Long, Xi-En,Tang, Yue-feng,Wen, Jiong,Liu, Rongle. 2018

[14]The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties. Ye, Xinxin,Wu, Liang,Sun, Bo,Ye, Xinxin,Li, Hongying,Ma, Yibing,Wu, Liang. 2014

[15]Testing the modified Rothamsted Carbon Model for paddy soils against the results from long-term experiments in southern China. Xu, Minggang,Jiang, Guiying,Shirato, Yasuhito,Yagasaki, Yasumi,Huang, Qinghai,Li, Zuzhang,Nie, Jun,Shi, Xiaojun. 2013

[16]Cropping systems affect paddy soil organic carbon and total nitrogen stocks (in rice-garlic and rice-fava systems) in temperate region of southern China. Zhang, Tao,Liu, Hongbin,Zhai, Limei,Zhang, Dan,Wang, Hongyuan,Chen, Anqiang,Lei, Baokun,Liu, Jian.

[17]Fertilization increases paddy soil organic carbon density. Wang, Shao-xian,Liang, Xin-qiang,Chen, Ying-xu,Wang, Shao-xian,Luo, Qi-xiang,Fan, Fang,Li, Zu-zhang,Sun, Huo-xi,Dai, Tian-fang,Wan, Jun-nan,Li, Xiao-jun. 2012

[18]Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Xu, Minggang,Wang, Xiujun,Wang, Xiujun,Huang, Qinhai,Nie, Jun,Li, Zuzhang,Li, Shuanglai,Hwang, Seon Woong,Lee, Kyeong Bo. 2012

[19]Predictive Model for Phosphorus Accumulation in Paddy Soils with Long-Term Inorganic Fertilization. Li, J. M.,Liu, J.,Xu, M. G.,Ma, Y. B.,Li, J. M.,Gao, J. S.. 2012

[20]Denitrification-dependent anammox activity in a permanently flooded fallow ravine paddy field. Zhou, Sheng,Borjigin, Sodbilig,Riya, Shohei,Hosomi, Masaaki,Borjigin, Sodbilig.

作者其他论文 更多>>