Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton

文献类型: 外文期刊

第一作者: Kumar, Pawan

作者: Kumar, Pawan;He, Yajun;Singh, Rippy;Shen, Xinlian;Chee, Peng W.;Davis, Richard F.;Guo, Hui;Paterson, Andrew H.;Peterson, Daniel G.;Nichols, Robert L.;Shen, Xinlian;He, Yajun

作者机构:

关键词: Cotton;Root Knot Nematodes;RKN;QTLs;SNP;Candidate genes

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2016 年 17 卷

页码:

收录情况: SCI

摘要: Background: The southern root-knot nematode (Meloidogyne incognita; RKN) is one of the most important economic pests of Upland cotton (Gossypium hirsutum L.). Host plant resistance, the ability of a plant to suppress nematode reproduction, is the most economical, practical, and environmentally sound method to provide protection against this subterranean pest. The resistant line Auburn 623RNR and a number of elite breeding lines derived from it remain the most important source of root-knot nematode (RKN) resistance. Prior genetic analysis has identified two epistatically interacting RKN resistance QTLs, qMi-C11 and qMi-C14, affecting gall formation and RKN reproduction, respectively. Results: We developed a genetic population segregating only for the qMi-C14 locus and evaluated the genetic effects of this QTL on RKN resistance in the absence of the qMi-C11 locus. The qMi-C14 locus had a LOD score of 12 and accounted for 24.5 % of total phenotypic variation for egg production. In addition to not being significantly associated with gall formation, this locus had a lower main effect on RKN reproduction than found in our previous study, which lends further support to evidence of epistasis with qMi-C11 in imparting RKN resistance in the Auburn 623RNR source. The locus qMi-C14 was fine-mapped with the addition of 16 newly developed markers. By using the reference genome sequence of G. raimondii, we identified 20 candidate genes encoding disease resistance protein homologs in the newly defined 2.3 Mb region flanked by two SSR markers. Resequencing of an RKN resistant and susceptible G. hirsutum germplasm revealed non-synonymous mutations in only four of the coding regions of candidate genes, and these four genes are consequently of high interest. Conclusions: Our mapping results validated the effects of the qMi-C14 resistance locus, delimiting the QTL to a smaller region, and identified tightly linked SSR markers to improve the efficiency of marker-assisted selection. The candidate genes identified warrant functional studies that will help in identifying and characterizing the actual qMi-C14 defense gene(s) against root-knot nematodes.

分类号:

  • 相关文献

[1]Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Ren, Deyong,Rao, Yuchun,Huang, Lichao,Leng, Yujia,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Dong, Guojun,Guo, Longbiao,Qian, Qian,Zeng, Dali,Rao, Yuchun,Lu, Mei. 2016

[2]A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. Sun, Rui,Chang, Yuansheng,Wang, Yi,Li, Hui,Wu, Ting,Zhang, Xinzhong,Han, Zhenhai,Yang, Fengqiu,Zhao, Yongbo,Chen, Dongmei. 2015

[3]Regional association analysis-based fine mapping of three clustered QTL for verticillium wilt resistance in cotton (G. hirsutum. L). Yunlei Zhao,Wang, Hongmei,Hongmei Wang,Wei Chen,Pei Zhao,Haiyan Gong,Xiaohui Sang,Yanli Cui. 2017

[4]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[5]Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. Liang, Qingzhi,Li, Pengbo,Hu, Cheng,Hua, Hua,Li, Zhaohu,Hua, Jinping,Rong, Yihua,Wang, Kunbo.

[6]Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (Gossypium hirsutum L.). Shang, Lianguang,Liang, Qingzhi,Wang, Xiaocui,Abduweli, Abdugheni,Ma, Lingling,Cai, Shihu,Hua, Jinping,Wang, Yumei,Wang, Kunbo.

[7]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[8]Molecular dissection of the primary sink size and its related traits in rice. Xu, JL,Yu, SB,Luo, LJ,Zhong, DB,Mei, HW,Li, ZK. 2004

[9]QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice. Xia, Xiuzhong,Zhang, Zongqiong,Nong, Baoxuan,Zeng, Yu,Deng, Guofu,Li, Danting,Xiong, Faqian,Wu, Yanyan,Gao, Ju. 2017

[10]Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. Wang, Xiaodong,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Chen, Li,Xiang, Jun,Gan, Jianping,Wang, Aina,Wang, Hao,Tian, Jianhua,Zhao, Xiaoping,Zhao, Yajun,Zhao, Weiguo. 2016

[11]Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus. Lu, Kun,Peng, Liu,Zhang, Chao,Lu, Junhua,Yang, Bo,Xiao, Zhongchun,Liang, Ying,Xu, Xingfu,Qu, Cunmin,Zhang, Kai,Liu, Liezhao,Li, Jiana,Peng, Liu,Zhang, Chao,Zhu, Qinlong,Fu, Minglian,Yuan, Xiaoyan. 2017

[12]Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. Zhang, Zheng-Bin,Xu, Ping,Jia, Ji-Zeng,Zhou, Rong-Hua. 2010

[13]Transcriptome analysis of genes involved in anthocyanins biosynthesis and transport in berries of black and white spine grapes (Vitis davidii). Sun, Lei,Fan, Xiucai,Zhang, Ying,Jiang, Jianfu,Sun, Haisheng,Liu, Chonghuai. 2016

[14]Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7. Zhao, Xue,Teng, Weili,Cao, Guanglu,Li, Dongmei,Han, Yingpeng,Li, Wenbin,Li, Yinghui,Qiu, Lijuan,Li, Dongmei,Zheng, Hongkun. 2017

[15]High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. Xu, Ling,Zhang, Yan,Zhu, Mang,Zhong, Tao,Xu, Mingliang,Shao, Siquan,Chen, Wei,Tan, Jing,Fan, Xingming. 2014

[16]QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber. Liang, Danna,Chen, Minyang,Qi, Xiaohua,Xu, Qiang,Zhou, Fucai,Chen, Xuehao,Liang, Danna. 2016

[17]Identification of loci and genes for growth related traits from a genome-wide association study in a slow- x fast-growing broiler chicken cross. Liu, Ranran,Sun, Yanfa,Zhao, Guiping,Wang, Hongyang,Zheng, Maiqing,Li, Peng,Liu, Li,Wen, Jie,Sun, Yanfa,Liu, Ranran,Zhao, Guiping,Wang, Hongyang,Zheng, Maiqing,Wen, Jie.

[18]Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Wu, Xun,Li, Yongxiang,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Li, Chunhui,Li, Yu,Wang, Tianyu,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu,Wu, Xun,Zhang, Zhiwu.

[19]Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Li, ZK,Fu, BY,Gao, YM,Xu, JL,Ali, J,Lafitte, HR,Jiang, YZ,Rey, JD,Vijayakumar, CHM,Maghirang, R,Zheng, TQ,Zhu, LH.

[20]Identification of quantitative trait loci associated with soybean seed protein content using two populations derived from crosses between Glycine max and Glycine soja. Yan, Long,Xing, Li-Li,Chang, Ru-Zhen,Qiu, Li-Juan,Yan, Long,Yang, Chun-Yan,Zhang, Meng-Chen.

作者其他论文 更多>>