Studies on the Control of Ascochyta Blight in Field Peas (Pisum sativum L.) Caused by Ascochyta pinodes in Zhejiang Province, China

文献类型: 外文期刊

第一作者: Liu, Na

作者: Liu, Na;Xu, Shengchun;Zhang, Guwen;Hu, Qizan;Feng, Zhijuan;Gong, Yaming;Yao, Xiefeng;Mao, Weihua

作者机构:

关键词: field pea;ascochyta blight;Ascochyta pinodes;fungicides;biological control

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.64; 五年影响因子:6.32 )

ISSN: 1664-302X

年卷期: 2016 年 7 卷

页码:

收录情况: SCI

摘要: Ascochyta blight, an infection caused by a complex of Ascochyta pinodes, Ascochyta pinodella, Ascochyta pisi, and/or Phoma koolunga, is a destructive disease in many field peas (Pisum sativum L.)-growing regions, and it causes significant losses in grain yield. To understand the composition of fungi associated with this disease in Zhejiang Province, China, a total of 65 single-pycnidiospore fungal isolates were obtained from diseased pea samples collected from 5 locations in this region. These isolates were identified as Ascochyta pinodes by molecular techniques and their morphological and physiological characteristics. The mycelia of ZJ-1 could penetrate pea leaves across the stomas, and formed specific penetration structures and directly pierced leaves. The resistance level of 23 available pea cultivars was tested against their representative isolate A. pinodes ZJ-1 using the excised leaf-assay technique. The ZJ-1 mycelia could penetrate the leaves of all tested cultivars, and they developed typical symptoms, which suggested that all tested cultivars were susceptible to the fungus. Chemical fungicides and biological control agents were screened for management of this disease, and their efficacies were further determined. Most of the tested fungicides (11 out of 14) showed high activity toward ZJ-1 with EC50 < 5 mu g/mL. Moreover, fungicides, including tebuconazole, boscalid, iprodione, carbendazim, and fludioxonil, displayed more than 80% disease control efficacy under the recorded conditions. Three biocontrol strains of Bacillus sp. and one of Pantoea agglomerans were isolated from pea-related niches and significantly reduced the severity of disease under greenhouse and field conditions. To our knowledge, this is the first study on ascochyta blight in field peas, and results presented here will be useful for controlling the disease in this area.

分类号:

  • 相关文献

[1]QuEChERS in Combination with Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet Method for the Simultaneous Analysis of Six Fungicides in Grape. You, Xiangwei,Jiang, Wenqing,Liu, Fengmao,Liu, Congyun. 2013

[2]Stereoselective determination of benalaxyl in plasma by chiral high-performance liquid chromatography with diode array detector and application to pharmacokinetic study in rabbits. Wang, Qiuxia,Zhu, Wentao,Jia, Guifang,Wang, Xinquan,Zhou, Zhiqiang.

[3]Differential impact of pesticides and biopesticides on edaphic invertebrate communities in a citrus agroecosystem. Ma, C-S,Majeed, M. Z.,Naveed, M.,Riaz, M. A.,Afzal, M.,Riaz, M. A.. 2018

[4]Structures and Mechanism of Action for Complex III Inhibiting-Fungicides. Hou Yuxia,Qin Zhaohai,Yuan Huizhu. 2010

[5]Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Zhao, Xueping.

[6]Resistance of Botryodiplodia theobromae to Carbendazim and the Fungicides Screening for Mango Stem End Rot Control. Li, M.,Gao, Z. Y.,Zhang, Z. K.,Yang, F. Z.,Li, M.,Gao, Z. Y.,Zhang, Z. K.,Yang, F. Z.,Li, M..

[7]Screening and Cross-Resistance Analysis of Alternative Fungicides against Carbendazim-Resistant Colletotrichum gloeosporioides Penz. from Mango (Mangifera indica L.). Zhang, L. H.,Li, M.,Gao, Z. Y.,Zhang, Z. K.,Yang, F. Z.,Xie, Y. X.,Hu, M. J.,Zhang, L. H.,Li, M.,Gao, Z. Y.,Zhang, Z. K.,Yang, F. Z.,Xie, Y. X.,Hu, M. J.,Yang, Y..

[8]Degradation of four fungicides in tropical soils from Hainan, China. Han, Bing Jun,Peng, Li Xu,Chen, Li Xia.

[9]Effect of parasitism on flight behavior of the soybean aphid, Aphis glycines. Wu, Kongming,Wyckhuys, Kris A. G.,Heimpel, George E..

[10]Effects of Carbon Concentrations and Carbon to Nitrogen ratios on Sporulation of Two Biological Control Fungi as Determined by Different Culture Methods. Liu, Xingzhong,Gao, Li.

[11]Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro. Li, Zhi-Fang,Wang, Ling-Fei,Feng, Zi-Li,Zhao, Li-Hong,Shi, Yong-Qiang,Zhu, He-Qin.

[12]Artificial diet development and its effect on the reproductive performances of Propylea japonica and Harmonia axyridis. Ali Intazar,Shuai Zhang,Jun-Yu Luo,Chun-Yi Wang,Li-Min Lv,JinJie Cui. 2016

[13]Influence of five aphid species on development and reproduction of Propylaea japonica (Coleoptera: Coccinellidae). Zhang, Shi-Ze,Li, Jian-Jun,Shan, Hong-Wei,Liu, Tong-Xian,Zhang, Fan. 2012

[14]Suitability of various prey types for the development of Propylea japonica (Coleoptera : Coccinellidae). Zhang, Shi-Ze,Zhang, Fan,Hua, Bao-Zhen. 2007

[15]Diversity and biocontrol potential of endophytic fungi in Brassica napus. Zhang, Jing,Yang, Long,Jiang, Daohong,Li, Guoqing,Zhang, Qinghua,Zhang, Jing,Yang, Long,Jiang, Daohong,Li, Guoqing,Zhang, Lei,Chen, Weidong. 2014

[16]Interspecific competition between Peristenus spretus and Peristenus relictus (Hymenoptera: Braconidae), larval parasitoids of Apolygus lucorum (Hemiptera: Miridae). Wu, Kongming,Luo, Shuping,Zhang, Feng,Wu, Kongming,Zhang, Feng. 2018

[17]Ecology, Worldwide Spread, and Management of the Invasive South American Tomato Pinworm, Tuta absoluta: Past, Present, and Future. Guedes, Raul Narciso C.,Wan, Fang-Hao,Desneux, Nicolas. 2018

[18]Diets structure of a common lizard Eremias argus and their effects on grasshoppers: Implications for a potential biological agent. Wu, Huihui,Tu, Xiongbing,Wang, Guangjun,Cao, Guangchun,Nong, Xiangqun,Zhang, Zehua,Zhang, Zhuoran,Su, Hongtian,Shi, Yongming. 2016

[19]Experimental temperature elevation promotes the cooperative ability of two natural enemies in the control of insect herbivores. Jiang, Jie-Xian,Yang, Jun-Hua,Ji, Xiang-Yun,Zhang, Hao,Wan, Nian-Feng,Wan, Nian-Feng. 2018

[20]Improvement of the propamocarb-tolerance of Lecanicillium lecanii through UV-light radiation-based mutagenesis. Xie, Ming,Li, Qian,Hu, Xin-Ping,Zhang, Yan-Jun,Peng, De-Liang,Zhang, Zhao-Rong,Li, Qiang,Liu, Zhi-Qi. 2018

作者其他论文 更多>>