Biomass-Based Leaf Curvilinear Model for Rapeseed (Brassica napus L.)

文献类型: 外文期刊

第一作者: Zhang, Wenyu

作者: Zhang, Wenyu;Zhang, Weixin;Ge, Daokuo;Cao, Hongxin;Liu, Yan;Fu, Kunya;Feng, Chunhuan;Chen, Weitao;Song, Chuwei

作者机构:

关键词: Rapeseed (Brassica napus L.);Biomass;Leaf curve;Functional-structural plant models (FSPMs)

期刊名称:COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IX, CCTA 2015, PT I

ISSN: 1868-4238

年卷期: 2016 年 478 卷

页码:

收录情况: SCI

摘要: Leaf is one of the most important photosynthetic organs of rapeseed (Brassica napus L.). To quantify relationships between the leaf curve and the corresponding leaf biomass for rapeseed on main stem, this paper presents a biomass-based leaf curvilinear model for rapeseed. Various model variables, including leaf length, bowstring length, tangential angle, and bowstring angle, were parameterized based on data derived from the field experiments with varieties, fertilizer, and transplanting densities during 2011 to 2012, and 2012 to 2013 growing seasons. And then we analysed the biological significance of curvilinear equation for straight leaves, constructed the straight leaf probabilistic model on main stem, quantified the relationship between leaf curvature and the corresponding leaf biomass, and constructed the leaf curvilinear model based on the assumption and verification of the curvilinear equation form for curving leaf. The probability of straight leaf can be quantified with piecewise function according to the different trend in the normalized leaf ranks ((0, 0.4], and (0.4, 1]). The leaf curvature decreased with the increasing of leaf biomass, and can be described with reciprocal function. The curve of straight leaf and the curving leaf can be simulated by linear equation and the quadratic function, respectively. Our models were validated with the independent dataset from the field experiment, and the results indicated that the model could effectively predict the straight leaf probability and leaf curvature, which would be useful for linking the rapeseed growth model with the rapeseed morphological model, and set the stage for the development of functional-structural rapeseed models.

分类号:

  • 相关文献

[1]Biomass-based rapeseed (Brassica napus L.) stem and rachis geometric parameter model. Liu, Yan,Zhang, Weixin,Chen, Weitao,Cao, Hongxin,Ge, Daokuo,Feng, Chunhuan,Song, Chuwei,Ge, Sijun,Liu, Yongxia. 2016

[2]Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Zeng Liu,Li Jing-jing,Lu Guang-yuan,Fu Gui-ping,Zhang Xue-kun,Zou Xi-ling,Cheng Yong,Cai Jun-song,Li Jing-jing,Li Chun-sheng,Ma Hai-qing,Liu Qing-yun. 2018

[3]A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). Li, Na,Shi, Jiaqin,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong. 2014

[4]Identification of suitable reference genes in leaves and roots of rapeseed (Brassica napus L) under different nutrient deficiencies. Han Pei-pei,Qin Lu,Li Yin-shui,Liao Xiang-sheng,Xu Zi-xian,Hu Xiao-jia,Xie Li-hua,Yu Chang-bing,Wu Yan-feng,Liao Xing. 2017

[5]Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L.. Zou Xi-ling,Zeng Liu,Lu Guang-yuan,Cheng yong,Xu Jin-song,Zhang Xue-kun. 2015

[6]The Transcriptome of Brassica napus L. Roots under Waterlogging at the Seedling Stage. Zou, Xiling,Tan, Xiaoyu,Hu, Chengwei,Zeng, Liu,Lu, Guangyuan,Fu, Guiping,Cheng, Yong,Zhang, Xuekun. 2013

[7]Nitrogen Revising of Rapeseed (Brassica napus L.) Phenology and Leaf Number Models. Liu, Yan,Zhang, Wenyu,Ge, Daokuo,Chen, Yuli,Zhang, Weixin,Fu, Kunya,Feng, Chunhuan,Zhu, Yeping,Yue, Yanbin,Liu, Yongxia,Sun, Jinying,Zhang, Zhiyou,Liu, Na,Yang, Taiming. 2015

[8]Analysis of genetic effects and heritabilities for linoleic and alpha-linolenic acid content of Brassica napus L. across Chinese environments. Zhang, HZ,Shi, CH,Wu, JG,Ren, YL,Li, CT,Zhang, DQ,Zhang, YF. 2004

[9]A Cotton BURP Domain Protein Interacts With -Expansin and Their Co-Expression Promotes Plant Growth and Fruit Production. Bing Xu,Jin-Ying Gou,Fu-Guang Li,Xiao-Xia Shangguan,Bo Zhao,Chang-Qing Yang,LingJian Wang,Sheng Yuan,Chang-Jun Liu,Xiao-Ya Chen. 2013

[10]Winter wheat biomass estimation based on canopy spectra. Zheng Ling,Zhu Dazhou,Zhang Baohua,Wang Cheng,Zhao Chunjiang,Zheng Ling,Liang Dong. 2015

[11]Models of Dry Matter Production and Yield Formation for the Protected Tomato. Chen, Yuli,Zhang, Zhiyou,Zhu, Yan,Chen, Yuli,Zhang, Zhiyou,Liu, Yan,Cao, Hongxin. 2012

[12]Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain. Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Koppe, Wolfgang,Chen, Xinping,Zhang, Fusuo,Li, Fei,Miao, Yuxin,Miao, Yuxin. 2010

[13]Switchgrass SBP-box transcription factors PvSPL1 and 2 function redundantly to initiate side tillers and affect biomass yield of energy crop. Wu, Zhenying,Cao, Yingping,Yang, Ruijuan,Qi, Tianxiong,Hang, Yuqing,Zhou, Gongke,Fu, Chunxiang,Wu, Zhenying,Cao, Yingping,Yang, Ruijuan,Qi, Tianxiong,Hang, Yuqing,Zhou, Gongke,Fu, Chunxiang,Lin, Hao,Wang, Zeng-Yu. 2016

[14]Production of Adipic Acid from Sugar Beet Residue by Combined Biological and Chemical Catalysis. Zhang, Hongfang,Su, Xiaoyun,Ang, Ee Lui,Zhao, Huimin,Li, Xiukai,Zhang, Yugen,Su, Xiaoyun,Zhao, Huimin,Zhao, Huimin,Zhao, Huimin. 2016

[15]Amounts of Stubbles Left in Paddy Fields: Evaluation from the Viewpoints of C Sequestration and Soil Fertility. Liu, Jun-Jie,Wang, Guang-hua,Zou, Ping,Fu, Jian-rong,Ando, Ho,Kimura, Makoto. 2017

[16]Optimal Concentration of Zinc Sulfate in Foliar Spray to Alleviate Salinity Stress in Glycine soja. Jiang, W.,Xu, H. L.,Lu, H. F.,Jiang, W.,Sun, X. H.,Mantri, N.. 2014

[17]Monitoring of Winter Wheat Aboveground Fresh Biomass Based on Multi-Information Fusion Technology. Zheng Ling,Dong Da-ming,Zhang Bao-hua,Wang Cheng,Zhao Chun-jiang,Zheng Ling,Zhu Da-zhou. 2016

[18]Zinc application alleviates the adverse effects of lead stress more in female Morus alba than in males. Dong, Tingfa,Liao, Yongmei,Xu, Xiao,Qin, Fang,Dong, Tingfa,Liu, Gang,Huang, Gaiqun,Xu, Xiao. 2018

[19]A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Yue, Jibo,Feng, Haikuan,Yang, Guijun,Li, Zhenhai,Yue, Jibo,Yue, Jibo,Yang, Guijun,Li, Zhenhai,Feng, Haikuan,Yang, Guijun,Li, Zhenhai. 2018

[20]BIOMASS ESTIMATION OF OILSEED RAPE USING SIMULATED COMPACT POLARIMTRIC SAR IMAGERY. Yang, Hao,Yang, Guijun,Gu, Xiaohe,Xie, Lei,Zhang, Hong,Yang, Hao,Chen, Erxue,Yang, Hao,Li, Zhenhong. 2016

作者其他论文 更多>>