Haplotypes of qGL3 and their roles in grain size regulation with GS3 alleles in rice

文献类型: 外文期刊

第一作者: Zhang, Y. D.

作者: Zhang, Y. D.;Zhu, Z.;Zhao, Q. Y.;Chen, T.;Yao, S.;Zhou, L. H.;Zhao, L.;Zhao, C. F.;Wang, C. L.;Zhang, Y. D.;Zhao, Q. Y.;Wang, C. L.

作者机构:

关键词: Rice;Haplotype;Grain size;qGL3;GS3

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2016 年 15 卷 1 期

页码:

收录情况: SCI

摘要: Grain size is an important trait that directly influences rice yield. The qGL3 and GS3 genes are two putative regulators that play a role in grain size determination. A single rare nucleotide substitution (C. A) at position 1092 in exon 10 of qGL3 might be responsible for variations in grain size. However, little is known about the haplotype variations of qGL3 and their interactions with GS3 during the regulation of grain length and grain weight. In this study, qGL3 haplotype variations were examined in 61 Indica varieties, and the effects of qGL3 and GS3 on grain trait variation in 110 lines were evaluated. Six qGL3 haplotypes were identified, and qGL32 was a major haplotype in Indica varieties. Moreover, qGL3-6, a reported key single nucleotide polymorphism, was validated. Our results showed that the mutants qgl3 and gs3 (loss-of-function mutation types of qGL3 and GS3, respectively) had significant effects on grain length and grain weight. However, no significant effects associated with differences in the regulation of grain thickness were observed. The genetic effects of qgl3 on grain phenotypes were stronger than those of gs3. In addition to increased grain length, qgl3 had an evident role in grain width increases. In contrast, gs3 played an opposite role in grain width regulation. These results provided novel insights into grain size control and the functions of qgl3 and gs3 in rice yield improvement.

分类号:

  • 相关文献

[1]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[2]A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Hu, Jiang,Wang, Yuexing,Fang, Yunxia,Xu, Jie,Yu, Haiping,Shi, Zhenyuan,Pan, Jiangjie,Zhang, Dong,Zhu, Li,Dong, Guojun,Guo, Longbiao,Zeng, Dali,Zhang, Guangheng,Xie, Lihong,Qian, Qian,Zeng, Longjun,Kang, Shujing,Xiong, Guosheng,Qian, Qian,Li, Jiayang,Li, Jiayang. 2015

[3]SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Duan, Penggen,Xu, Ran,Zhang, Baolan,Li, Yunhai,Duan, Penggen,Rao, Yuchun,Zeng, Dali,Yang, Yaolong,Dong, Guojun,Qian, Qian,Rao, Yuchun. 2014

[4]Identification of QTLs for grain size and characterization of the beneficial alleles of grain size genes in large grain rice variety BL129. Gao Xuan,Luo Yue-hua,Zhu Xu-dong,Gao Xuan,Fang Na,Duan Peng-gen,Wu Ying-bao,Li Yun-hai.

[5]Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Yu, Si-Bin,Zhang, Hong-Wei,Yu, Si-Bin. 2016

[6]SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Feng, Zhiming,Wang, Chunming,Zhang, Long,Zhang, Shengzhong,Zhang, Huan,Yang, Chunyan,Hu, Jinlong,You, Xiaoman,Liu, Xi,Yang, Xiaoming,Jiang, Ling,Wan, Jianmin,Wu, Chuanyin,Chen, Jun,Guo, Xiuping,Zhang, Xin,Wu, Fuqing,Wan, Jianmin,Roh, Jeehee,Kim, Seong-Ki,Terzaghi, William.

[7]08SG2/OsBAK1 regulates grain size and number, and functions differently in Indica and Japonica backgrounds in rice. Yuan, Hua,Fan, Shijun,Huang, Juan,Zhan, Shijie,Wang, Shifu,Gao, Peng,Chen, Weilan,Tu, Bin,Ma, Bingtian,Wang, Yuping,Qin, Peng,Li, Shigui,Yuan, Hua,Fan, Shijun,Zhan, Shijie,Wang, Shifu,Gao, Peng,Chen, Weilan,Tu, Bin,Ma, Bingtian,Wang, Yuping,Qin, Peng,Li, Shigui,Huang, Juan. 2017

[8]GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Zhou, Yong,Tao, Yajun,Miao, Jun,Liu, Jun,Liu, Yanhua,Yi, Chuandeng,Yang, Zefeng,Gong, Zhiyun,Liang, Guohua,Zhu, Jinyan. 2017

[9]Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Duan, Penggen,Xu, Jinsong,Zhang, Baolan,Zhang, Guozheng,Huang, Ke,Huang, Luojiang,Xu, Ran,Li, Yunhai,Zeng, Dali,Qian, Qian,Geng, Mufan,Ge, Song,Zhang, Guozheng,Huang, Ke,Huang, Luojiang. 2017

[10]SEQUENCE VARIATIONS AND HAPLOTYPES OF THE BACTERIAL BLIGHT RESISTANCE GENE xa13 IN RICE. Yu, P.,Yuan, X. P.,Wang, C. H.,Xu, Q.,Feng, Y.,Yu, H. Y.,Wang, Y. P.,Wei, X. H.,Wang, X. M..

[11]Spatial heterogeneity of plant species on the windward slope of active sand dunes in a semi-arid region of China. Jiang, DeMing,Miao, ChunPing,Li, XueHua,Alamusa,Zhou, QuanLai,Miao, ChunPing,Li, XiaoLan. 2013

[12]Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1 a in wheat. Guo, Ying,Sun, Jinjie,Zhang, Guizhi,Wang, Yingying,Kong, Fanmei,Zhao, Yan,Li, Sishen,Guo, Ying,Wang, Yingying. 2013

[13]Regulatory Role of OsMADS34 in the Determination of Glumes Fate, Grain Yield, and Quality in Rice. Ren, Deyong,Rao, Yuchun,Leng, Yujia,Li, Zizhuang,Xu, Qiankun,Wu, Liwen,Qiu, Zhennan,Zeng, Dali,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Chen, Guang,Dong, Guojun,Guo, Longbiao,Qian, Qian,Rao, Yuchun,Li, Zizhuang,Xue, Dawei. 2016

[14]TaGW2, a Good Reflection of Wheat Polyploidization and Evolution. Qin, Lin,Zhang, Xueyong,Qin, Lin,Zhang, Xueyong,Qin, Lin,Zhao, Junjie,Li, Tian,Hou, Jian,Zhang, Xueyong,Hao, Chenyang. 2017

[15]The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Chen, SB,Zhu, YG,Ma, YB.

[16]Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.). Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun,Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun.

[17]Fine mapping of LOW TILLER 1, a gene controlling tillering and panicle branching in rice. Yu, Haiping,Qiu, Zhennan,Xu, Qiankun,Wang, Zhongwei,Zeng, Dali,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Chen, Guang,Guo, Longbiao,Qian, Qian,Ren, Deyong,Yu, Haiping.

[18]Fine Mapping of a Novel defective glume 1 (dg1) Mutant, Which Affects Vegetative and Spikelet Development in Rice. Yu, Haiping,Ruan, Banpu,Zhang, Yu,Chen, Wenfu,Yu, Haiping,Ruan, Banpu,Zhang, Yu,Chen, Wenfu,Yu, Haiping,Ruan, Banpu,Wang, Zhongwei,Ren, Deyong,Zhang, Yu,Leng, Yujia,Zeng, Dali,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Chen, Guang,Guo, Longbiao,Qian, Qian. 2017

[19]Simple sequence repeat markers reveal multiple loci governing grain-size variations in a japonica rice (Oryza sativa L.) mutant induced by cosmic radiation during space flight. Wang, Junmin,Wei, Lijun,Zheng, Tianqing,Zhao, Xiuqin,Xu, Jianlong,Li, Zhikang,Ali, Jauhar.

[20]TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Ma, Lin,Chen, Xinhong,Ma, Lin,Li, Tian,Hao, Chenyang,Wang, Yuquan,Zhang, Xueyong.

作者其他论文 更多>>
  • Fungal Planet description sheets: 1550-1613

    作者:Crous, P. W.;Costa, M. M.;Kandemir, H.;Vermaas, M.;Vu, D.;Zhao, L.;Dijksterhuis, J.;Groenewald, J. Z.;Crous, P. W.;Wingfield, M. J.;Arumugam, E.;Kaliyaperumal, M.;Murugadoss, R.;Gunaseelan, S.;Kezo, K.;Chellappan, N.;Vasan, V.;Flakus, A.;Darmostuk, V.;Piatek, M.;Rodriguez-Flakus, P.;Stryjak-Bogacka, M.;Czachura, P.;Mazur, E.;Sliwa, L.;Jurjevic, Z.;Balashov, S.;Mahadevakumar, S.;Mahadevakumar, S.;Kumar, S.;Mufeeda, K. T.;Shivas, R. G.;Tan, Y. P.;Abell, S. E.;Danteswari, C.;Sarma, P. V. S. R. N.;Podile, A. R.;Denchev, C. M.;Denchev, T. T.;Etayo, J.;Gene, J.;Hubka, V.;Hubka, V.;Illescas, T.;Jansen, G. M.;Larsson, E.;Larsson, E.;Vauras, J.;Acal, D. A.;Akulov, A.;Alhudaib, K.;Ismail, A. M.;Alhudaib, K.;Ismail, A. M.;Asif, M.;Saba, M.;Baral, H. -O.;Baturo-Ciesniewska, A.;Begerow, D.;Kemler, M.;Beja-Pereira, A.;Vila-Vicosa, C.;Beja-Pereira, A.;Bianchinotti, M. V.;Sanchez, R. M.;Bianchinotti, M. V.;Sanchez, R. M.;Bilanski, P.;Jankowiak, R.;Chandranayaka, S.;Cowan, D. A.;Custodio, F. A.;Delgado, G.;De Silva, N. I.;Suwannarach, N.;Duenas, M.;Eisvand, P.;Fachada, V.;Fachada, V.;Vila-Vicosa, C.;Fritsche, Y.;Guerra, M. P.;Lopes, M. E.;Stefenon, V. M.;Zappelini, J.;Fuljer, F.;Ganga, K. G. G.;Latha, K. P. D.;Hansen, K.;Hywel-Jones, N.;Ismail, A. M.;Jacobs, C. R.;Karich, A.;Kislo, K.;Wrzosek, M.;Klofac, W.;Krisai-Greilhuber, I.;Voglmayr, H.;Lebeuf, R.;Macia-Vicente, J. G.;Macia-Vicente, J. G.;Maggs-Kolling, G.;Maggs-Kolling, G.;Magista, D.;Magista, D.;Mehrabi-Koushki, M.;Miller, A. N.;Mombert, A.;Ossowska, E. A.;Patejuk, K.;Piskorski, S.;Ruszkiewicz-Michalska, M.;Plaza, M.;Polhorsky, A.;Raza, M.;Singh, R.;Smith, M. E.;Strasiftakova, D.;Szczepanska, K.;Thines, M.;Thines, M.;Thines, M.;Thorn, R. G.;van der Vegte, M.

    关键词:ITS nrDNA barcodes; LSU; new taxa; systematics

  • Protective effect of sesamol on cognitive impairment in APP/PS1 mice

    作者:Xu, Y. L.;Zhang, Y. D.;Wang, Z. P.;Wang, T.;Rong, S.;Chen, W. W.;Fan, C.;Wang, T.;Xu, J. Q.

    关键词:sesamol; Alzheimer's disease; cognition; SIRT1; BDNF

  • Pathogenic infection characteristics and risk factors for bovine respiratory disease complex based on the detection of lung pathogens in dead cattle in Northeast China

    作者:Zhou, Y.;Dai, G.;Li, X.;Xiang, Y.;Jiang, S.;Zhang, Z.;Zhu, Z.;Fan, C.;Zhou, Y.;Zhou, Y.;Shao, Z.;Ren, Y.;Zhang, G.

    关键词:bovine respiratory disease complex; necropsy; pathogen detection; epidemiological investigation

  • ANTIMICROBIAL ACTIVITY AND COMPONENT ANALYSIS OF CLEOME SPINOSA AGAINST FUSARIUM OXYSPORUM

    作者:Zhang, X. Z.;Wang, C. L.;Liu, D.;Sa, R. N.;Gao, J. Y.;Liu, X. F.;Liu, D. W.;Yang, S.;Ma, T.;Li, X. L.;Chen, R. X.;Du, H. R.;Zhang, Y. J.;Zhang, X. Z.;Sa, R. N.

    关键词:Antimicrobial activity; Cleome spinosa; Fusarium oxysporum; GC-MS; Volatile constituent identification Published first online January 24; 2021; Published final August 07; 2021

  • Equine chorionic gonadotropin pretreatment 15 days before fixed-time artificial insemination improves the reproductive performance of replacement gilts

    作者:Zhao, Q.;Tao, C.;Wei, Q.;Wang, L.;Liu, M.;Li, J.;Pan, J.;Zhu, Z.;Huang, J.;Yu, F.;Chen, X.;Zhang, L.

    关键词:Follicular development; Ovulation; Pigs; Reproductive technique; Total pigs born

  • Hepatic transcriptome perturbations in dairy cows fed different forage resources

    作者:Gao, S. T.;Ma, Lu;Zhang, Y. D.;Wang, J. Q.;Bu, D. P.;Loor, J. J.;Loor, J. J.

    关键词:Liver transcriptome; Forage resources; RNAseq; Corn Stover

  • Effects of chlorsulfuron and cadmium on metabolites of maize seedlings

    作者:Zhao, L.;Yan, S.;Shi, X.;Zhang, J.;Zhang, H.;Wang, M.;Deng, Y.;Zhao, L.

    关键词:branched-chain amino acid; joint effect; metabolomics; nuclear magnetic resonance