Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress

文献类型: 外文期刊

第一作者: Wang, Hongyan

作者: Wang, Hongyan;Tang, Xiaoli;Shao, Hong-Bo;Wang, Hongyan;Wang, Honglei;Wang, Hongyan;Tang, Xiaoli;Shao, Hong-Bo

作者机构:

关键词: Kosteletzlcya virginica;salt stress;proline metabolism;proline accumulation;expression profiles

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2015 年 6 卷

页码:

收录情况: SCI

摘要: Proline accumulation is a common response to salt stress in many plants. Salt stress also increased proline concentration in roots, stems, and leaves of Kosteletzkya virginica seedling treated with 300 mM NaCl for 24 h and reached 3.75-, 4.76-, and 6.83- fold higher than controls. Further study on proline content in leaves under salt stress showed that proline content increased with increasing NaCl concentrations or time. The proline level peaked at 300 mM NaCl for 24 h and reached more than sixfold higher than control, but at 400 mM NaCl for 24 h proline content fell back slightly along with wilting symptom. To explore the cause behind proline accumulation, we first cloned full length genes related to proline metabolism including KvP5CS1, KvOAT, KvPDH, and KvProT from K. virginica and investigated their expression profiles. The results revealed that the expressions of KvP5CS1 and KvProT were sharply up-regulated by salt stress and the expression of KvOAT showed a slight increase with increasing salt concentrations or time, while the expression of KvPDH was not changed much and slightly decreased before 12 h and then returned to the original level. As the key enzyme genes for proline biosynthesis, the up-regulated expression of KvP5CS1 played a more important role than KvOAT for proline accumulation in leaves under salt stress. The low expression of KvPDH for proline catabolism also made a contribution to proline accumulation before 12 h.

分类号:

  • 相关文献

[1]Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Su, Jiuchang,Zhang, Yihua,Nie, Yang,Cheng, Dan,Shen, Wenbiao,Wang, Ren,Hu, Huali,Chen, Jun,Zhang, Jiaofei,Du, Yuanwei. 2018

[2]Regulation of gaseous signaling molecules on proline metabolism in plants. He, Huyi,He, Long-Fei. 2018

[3]The effect of NaCl on proline metabolism in Saussurea amara seedlings. Wang, Kang,Zhou, He,Sun, Yan,Liu, Yanxiang,Dong, Kuanhu,Dong, Jie,Kang, Junmei,Yang, Qingchuan. 2011

[4]Effect of 24-epibrassinolide on chilling injury of peach fruit in relation to phenolic and proline metabolisms. Gao, Hui,Lv, XinGang,Cheng, Ni,Cao, Wei,Zhang, ZhengKe,Peng, BangZhu.

[5]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

[6]Expression profiles of miRNAs in Gossypium raimondii. Jun MA,Teng-long GUO,Qing-lian WANG,Kun-bo WANG,Run-run SUN,Bao-hong ZHANG. 2015

[7]The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites. Xiao, Qiang,Sun, Liang,Wei, Yu,Ma, Xiao-Yu,Xiao, Yong,Yang, Xian-Ming,Guo, Yu-Yuan,Zhang, Yong-Jun,Zhang, Dan-Dan,Zhang, Ya-Nan. 2016

[8]Identification of the genes in tea leafhopper, Empoasca onukii (Hemiptera: Cicadellidae), that encode odorant-binding proteins and chemosensory proteins using transcriptome analyses of insect heads. Bian, Lei,Li, Zhao-Qun,Cai, Xiao-Ming,Luo, Zong-Xiu,Chen, Zong-Mao,Ma, Long. 2018

[9]Genetic Regulation of GA Metabolism during Vernalization, Floral Bud Initiation and Development in Pak Choi (Brassica rapa ssp chinensis Makino). Shang, Mengya,Wang, Xueting,Zhang, Jing,Ping, Amin,Hou, Leiping,Xing, Guoming,Li, Meilan,Qi, Xianhui,Li, Gaizhen. 2017

[10]Expression profiles of the p38 MAPK signaling pathway from Chinese shrimp I Fenneropenaeus chinensis in response to viral and bacterial infections. He, Yuying,Liu, Ping,Li, Jian,Wang, Qingyin,He, Yuying,Li, Jian,Yao, Wanlong. 2018

[11]Characterization and functional analysis of a chitin synthase gene (HcCS1) identified from the freshwater pearlmussel Hyriopsis cumingii. Zheng, H. F.,Bai, Z. Y.,Lin, J. Y.,Wang, G. L.,Li, J. L.,Zheng, H. F.,Li, J. L.. 2015

[12]Dynamic Expression of MicroRNA-127 During Porcine Prenatal and Postnatal Skeletal Muscle Development. Yang Ya-lan,Li Yan,Liang Ru-yi,Zhou Rong,Ao Hong,Mu Yu-lian,Yang Shu-lin,Li Kui,Tang Zhong-lin,Li Yan. 2014

[13]Characterization of MUSTN1 gene and its relationship with skeletal muscle development at postnatal stages in Pekin ducks. Xu, T. S.,Gu, L. H.,Liu, X. L.,Xu, T. S.,Xu, T. S.,Hou, S. S.,Zhang, X. H.,Sun, Y.,Ye, B. G.. 2015

[14]Identification and expression profile analysis of odorant-binding protein genes in Apolygus lucorum (Hemiptera: Miridae). Gu, Shao-Hua,Liu, Jing-Tao,Zhu, Xiao-Qiang,Guo, Yu-Yuan,Zhang, Yong-Jun,Liu, Jing-Tao,Zhou, Jing-Jiang.

[15]Newly identified invertebrate-type lysozyme (Splys-i) in mud crab (Scylla paramamosain) exhibiting muramidase-deficient antimicrobial activity. Zhou, Jian,Zhao, Shu,Fang, Wen-Hong,Zhou, Jun-Fang,Zhang, Jing-Xiao,Li, Xin-Cang,Zhou, Jian,Zhao, Shu,Fang, Wen-Hong,Zhou, Jun-Fang,Zhang, Jing-Xiao,Li, Xin-Cang,Zhou, Jian,Ma, Hongyu,Lan, Jiang-Feng. 2017

[16]Molecular cloning, expression profiles, and characterization of a novel polyphenol oxidase (PPO) gene in Hevea brasiliensis. Li, Dejun,Deng, Zhi,Liu, Changren,Zhao, Manman,Guo, Huina,Liu, Hui,Liu, Changren,Guo, Huina,Xia, Zhihui. 2014

[17]Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Li, Jinhua,Su, Xiaoxing,Yang, Wei,Pan, Yu,Su, Chenggang,Zhang, Xingguo,Li, Jinhua,Su, Xiaoxing,Yang, Wei,Pan, Yu,Su, Chenggang,Zhang, Xingguo,Wang, Yinlei. 2018

[18]cDNA structure, genomic organization and expression patterns of visfatin in silver Prussian carp (Carassius auratus gibelio). Dong Xu,Zou Shiping,Wu Xiaoxiong,Dai Hanchuan,Zeng Cuiping,Wang Xu,Long Liangqi,Zou Shiping. 2011

[19]Identification and Characterization of Odorant Binding Proteins in the Forelegs of Adelphocoris lineolatus (Goeze). Sun, Liang,Wang, Qian,Wang, Qi,Dong, Kun,Xiao, Yong,Zhang, Yong-Jun,Sun, Liang,Wang, Qian. 2017

[20]Transcriptome-wide identification and expression analysis of glutathione S-transferase genes involved in flavonoids accumulation in Dracaena cambodiana. Zhu, Jia-Hong,Li, Hui-Liang,Guo, Dong,Wang, Ying,Dai, Hao-Fu,Mei, Wen-Li,Peng, Shi-Qing.

作者其他论文 更多>>