Effects of Different Ecological Floating Bed Plant Assemblages on Water Purification and Phytoplankton Community Structure in Shallow Eutrophic Lakes: A Case Study in Lake Taihu

文献类型: 外文期刊

第一作者: Liang, Yidong

作者: Liang, Yidong;Zhang, Ting;Liang, Yidong;Zhang, Ting;Cui, Wei;Kuang, Zhen;Xu, Dongpo

作者机构:

关键词: ecological restoration; phytoplankton; functional group; eutrophic lakes; ecological floating beds

期刊名称:BIOLOGY-BASEL ( 影响因子:3.5; 五年影响因子:4.0 )

ISSN:

年卷期: 2025 年 14 卷 7 期

页码:

收录情况: SCI

摘要: To explore the effects of different plant combinations in ecological floating beds on water quality purification and phytoplankton community structure in shallow eutrophic lakes, we conducted a survey of phytoplankton communities within ecological floating beds featuring distinct plant combinations in Meiliang Bay, Lake Taihu, during June and August 2021. The study focuses on two combinations: EA (Canna indica + Acorus calamus + Phragmites australis) and ES (Canna indica + Oenanthe javanica + Sagittaria sagittifolia). Results indicated that ecological floating beds significantly improved water quality, with the strongest restoration effects observed in the EA area. Specifically, turbidity was reduced by 47-89%, while chlorophyll a (Chl-a) concentration inhibition rates reached 82% in June and 54% in August. The comprehensive trophic state index (TLI) remained stable at levels indicating slight eutrophication (<= 58.6). Phytoplankton community structure shifted from dominance by eutrophic functional groups (primarily FG M) toward greater diversity. In the EA area, the number of dominant functional groups increased from five (control) to six, and the abundance of the key cyanobacteria group (FG M) declined from 18.29% (control) to 7.86%. Redundancy analysis (RDA) revealed temporal changes in driving factors: nutrients were primary in June (explanation rate: 64.7%), while physical factors dominated in August (explanation rate: 51.2%). This study demonstrates that installing ecological floating beds with diverse plant combinations in shallow eutrophic lakes can effectively alter phytoplankton community structure and enhance in situ water restoration. Among the tested combinations, EA (Canna indica + Acorus calamus + Phragmites australis) exhibited the optimal restoration effect. These findings provide a scientific basis for water environment protection and aquatic biological resource restoration in shallow eutrophic lakes.

分类号:

  • 相关文献
作者其他论文 更多>>