Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica)

文献类型: 外文期刊

第一作者: Zhang, C. H.

作者: Zhang, C. H.;Ma, R. J.;Guo, L.;Yu, M. L.;Shangguan, L. F.;Sun, X.;Tao, R.;Korir, N. K.

作者机构:

关键词: Peach;AP2/ERF superfamily;Phylogenetic analysis;Gene characteristics

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2012 年 11 卷 4 期

页码:

收录情况: SCI

摘要: We identified 131 AP2/ERF (APETALA2/ethylene-responsive factor) genes in material from peach using the gene sequences of AP2/ERF amino acids of Arabidopsis thaliana (Brassicaceae) as probes. Based on the number of AP2/ERF domains and individual gene characteristics, the AP2/ERF superfamily gene in peach can be classified broadly into three families, ERF(ethylene-responsive factor), RAV (related to ABI3/VP1), and AP2 (APETALA2), containing 104, 5, and 21 members, respectively, along with a solo gene (ppa005376m). The 104 genes in the ERF family were further divided into 11 groups based on the group classification made for Arabidopsis. The scaffold localizations of the AP2/ERF genes indicated that 129 AP2/ERF genes were all located on scaffolds 1 to 8, except for two genes, which were on scaffolds 17 and 10. Although the primary structure varied among AP2/ERF superfamily proteins, their tertiary structures were similar. Most ERF family genes have no introns, while members of the AP2 family have more introns than genes in the ERF and RAV families. All sequences of AP2 family genes were disrupted by introns into several segments of varying sizes. The expression of the AP2/ERF superfamily genes was highest in the mesocarp; it was far higher than in the other seven tissues that we examined, implying that AP2/ERF superfamily genes play an important role in fruit growth and development in the peach. These results will be useful for selecting candidate genes from specific subgroups for functional analysis.

分类号:

  • 相关文献

[1]Structure, expression profile, and evolution of the sucrose synthase gene family in peach (Prunus persica). Zhang, Chunhua,Yu, Mingliang,Ma, Ruijuan,Shen, Zhijun,Zhang, Binbin,Korir, Nicholas Kibet.

[2]Genome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica). Zhang, C. H.,Ma, R. J.,Shen, Z. J.,Yu, M. L.,Sun, X.,Korir, N. K.. 2014

[3]Isolation, characterisation and phylogenetic analysis of resistance gene analogues in a wild species of peach (Prunus kansuensis). Cao, K.,Wang, L. R.,Zhu, G. R.,Fang, W. Ch.,Chen, Ch. W.. 2011

[4]Effect of blue light on ethylene biosynthesis, signalling and fruit ripening in postharvest peaches. Gong, Duoduo,Sheng, Tao,Shao, Jiarong,Song, Chunbo,Wo, Fengchao,Chen, Wei,Yang, Zhenfeng,Cao, Shifeng.

[5]Combination of salicylic acid and ultrasound to control postharvest blue mold caused by Penicillium expansum in peach fruit. Cao, Shifeng,Yang, Zhenfeng,Cai, Yuting,Zheng, Yonghua.

[6]Mutation rate analysis via parent-progeny sequencing of the perennial peach. I. A low rate in woody perennials and a higher mutagenicity in hybrids. Xie, Zhengqing,Wang, Long,Tian, Dacheng,Yang, Sihai,Wang, Lirong,Wang, Zhiqiang,Lu, Zhenhua,Hurst, Laurence D..

[7]Pulp volatiles measured by an electronic nose are related to harvest season, TSS concentration and TSS/TA ratio among 39 peaches and nectarines. Su, Mingshen,Zhang, Bo,Chen, Kunsong,Shen, Jiyuan,Su, Mingshen,Ye, Zhengwen,Gu, Xiaojun,Guo, Juan.

[8]Identification of a candidate gene for resistance to root-knot nematode in a wild peach and screening of its polymorphisms. Cao, Ke,Wang, Lirong,Zhao, Pei,Zhu, Gengrui,Fang, Weichao,Chen, Changwen,Wang, Xinwei.

[9]KT/HAK/KUP potassium transporter genes differentially expressed during fruit development, ripening, and postharvest shelf-life of 'Xiahui6' peaches. Song, Zhizhong,Guo, Shaolei,Zhang, Chunhua,Zhang, Binbin,Ma, Ruijuan,Yu, Mingliang,Song, Zhizhong,Guo, Shaolei,Zhang, Chunhua,Zhang, Binbin,Ma, Ruijuan,Yu, Mingliang,Korir, Nicholas Kibet.

[10]Development of Ty1-copia retrotransposon-based SSAP molecular markers for the study of genetic diversity in peach. Jiao, Yun,Ma, Rui-juan,Shen, Zhi-jun,Yu, Ming-liang.

[11]Genome-Wide Identification and Analysis of the Type-B Authentic Response Regulator Gene Family in Peach (Prunus persica). Zeng, Jingjue,Zhu, Xudong,Haider, Muhammad S.,Zhang, Cheng,Wang, Chen,Wang, Xicheng.

[12]Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Zhou, Hui,Gu, Chao,Han, Yuepeng,Zhou, Hui,Kui Lin-Wang,Dare, Andrew P.,Espley, Richard V.,Allan, Andrew C.,Wang, Huiliang,He, Huaping.

[13]Multispectral detection of skin defects of bi-colored peaches based on vis-NIR hyperspectral imaging. Li, Jiangbo,Chen, Liping,Huang, Wenqian,Wang, Qingyan,Zhang, Baohua,Tian, Xi,Li, Bin,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Wang, Qingyan,Tian, Xi,Fan, Shuxiang,Li, Bin,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian.

[14]Inactivation of a Gene Encoding Carotenoid Cleavage Dioxygenase (CCD4) Leads to Carotenoid-Based Yellow Coloration of Fruit Flesh and Leaf Midvein in Peach. Ma, Juanjuan,Li, Jing,Zhou, Hui,Wang, Lu,Gu, Chao,Liao, Liao,Han, Yuepeng,Ma, Juanjuan,Zhou, Hui,Zhao, Jianbo,Ren, Fei.

[15]Physiological and transcriptional responses in the iron-sulphur cluster assembly pathway under abiotic stress in peach (Prunus persica L.) seedlings. Song, Zhizhong,Yang, Yong,Xu, Jianlan,Ma, Ruijuan,Yu, Mingliang.

[16]Genome-wide identification and expression analysis of the lipoxygenase gene family during peach fruit ripening under different postharvest treatments. Guo, Shaolei,Song, Zhizhong,Ma, Ruijuan,Yang, Yong,Yu, Mingliang,Guo, Shaolei,Yang, Yong,Guo, Shaolei,Song, Zhizhong,Ma, Ruijuan,Yang, Yong,Yu, Mingliang.

[17]Cloning and expression of genes related to the sucrose-metabolizing enzymes and carbohydrate changes in peach. Zhang, Chunhua,Shen, Zhijun,Ma, Ruijuan,Yu, Mingliang,Zhang, Yanping,Han, Jian,Korir, Nicholas Kibet.

[18]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[19]Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Wei, Shu-Jun,Cao, Li-Jun,Gong, Ya-Jun,Shi, Bao-Cai,Wang, Su,Zhang, Fan,Guo, Xiao-Jun,Wang, Yuan-Min,Chen, Xue-Xin.

[20]Molecular characterization of the PpMADS1 gene from peach. Li, Cui,Zhang, Lin,Li, Yun-Fu,Ma, Rong-Cai,Li, Cui,Xie, Hua,Xu, Yong,Li, Yun-Fu,Ma, Rong-Cai,Li, Cui. 2012

作者其他论文 更多>>