Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea

文献类型: 外文期刊

第一作者: Wang, Chun-Mei

作者: Wang, Chun-Mei;Zhou, Wei;Li, Cai-Xia;Chen, Hao;Shi, Zhi-Qi;Fan, Yong-Jian

作者机构:

关键词: osthol;natural coumarin compound;powdery mildew;Sphaerotheca fuliginea

期刊名称:JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH ( 影响因子:1.569; 五年影响因子:1.598 )

ISSN: 1028-6020

年卷期: 2009 年 11 卷 9 期

页码:

收录情况: SCI

摘要: The efficacy of osthol, a natural coumarin compound, in controlling powdery mildew was evaluated in 2004-2005 in Anhui and Hebei Provinces of China. In both years, the treatments (osthol 15.0 and 18.0 g ai ha(-1)) showed a stable control efficiency of 75.42, 81.24% and 76.36, 84.84%, respectively, at the Institutes of Plant Protection of Hebei Academy of Agricultural Sciences. In field experiments, osthol was as effective as difenoconazole in controlling powdery mildew and was more effective than triadimefon against Sphaerotheca fuliginea. Protection was expressed as a significant reduction (up to 87% compared with the control) in the mildewed leaf area in young pumpkin plants. Osthol strongly inhibited spore germination and mycelial growth of S. fuliginea in vitro, damaged the cell wall and the organelles of the pathogen. At 48 h after incubation, 50 mu g ml(-1) osthol could completely inhibit spore germination. These findings suggested that the effect of osthol on powdery mildew may be associated with the direct fungitoxic property against the pathogen. We conclude that osthol would be an attractive natural compound for practical agronomic use against powdery mildew.

分类号:

  • 相关文献

[1]Application of osthol induces a resistance response against powdery mildew in pumpkin leaves. Shi, Zhiqi,Wang, Fei,Zhou, Wei,Zhang, Peng,Fan, Yong Jian. 2007

[2]Distribution of Baseline Sensitivities to Natural Product Physcion Among Isolates of Sphaerotheca fuliginea and Pseudoperonospora cubensis. Yang, X. J.,Ni, H.,Yang, X. J.,Yang, L. J.,Zeng, F. S.,Xiang, L. B.,Wang, S. N.,Yu, D. Z..

[3]Fusarium graminearum growth inhibition due to glucose starvation caused by osthol. Shi, Zhiqi,Shen, Shouguo,Zhou, Wei,Wang, Fei,Fan, Yongjian. 2008

[4]Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Liang, YC,Sun, WC,Si, J,Romheld, V. 2005

[5]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[6]Two members of TaRLK family confer powdery mildew resistance in common wheat. Tingting Chen,Jin Xiao,Jun Xu,Wentao Wan,Bi Qin,Aizhong Cao,Wei Chen,Liping Xing,Chen Du,Xiquan Gao,Shouzhong Zhang,Ruiqi Zhang,Wenbiao Shen,Haiyan Wang,Xiue Wang. 2016

[7]Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Caixia Lan,Xiaowen Ni,Jun Yan,Yong Zhang,Xianchun Xia,Xinmin Chen,Zhonghu He.

[8]Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis. Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Huang Wen-jiang,Chen Li-ping,Zhang Dong-yan,Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Zhang Dong-yan,Huang Wen-jiang. 2012

[9]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

[10]Reaction to powdery mildew and stripe rust in related species and landraces of wheat. He, Danxia,Li, Hongjie,Xu, Shichang,Duan, Xiayu,Zhou, Yilin,Li, Lihui. 2007

[11]Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image. Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Wang, Jihua,Shi, Yeyin. 2014

[12]Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. Zhan, Haixian,Li, Guangrong,Pan, Zhihui,Yang, Zujun,Zhan, Haixian,Zhang, Xiaojun,Hu, Jin,Li, Xin,Qiao, Linyi,Guo, Huijuan,Chang, Zhijian,Jia, Juqing,Chang, Zhijian. 2015

[13]Identification of the resistance gene to powdery mildew in Chinese wheat landrace Baiyouyantiao. Feng Jing,Fan Jie-ru,Zhou Yi-lin,Xu Xiao-dan,Ma Zhan-hong,Liu Zhi-yong,Li Qiang. 2018

[14]Pathotypes and Genetic Diversity of Blumeria graminis f sp hordei in the Winter Barley Regions in China. Zhu Jing-huan,Wang Jun-mei,Jia Qiao-jun,Yang Jian-ming,Lin Feng,Hua Wei,Shang Yi,Zhu Jing-huan,Zhou Yi-jun,Zhou Yi-jun. 2010

[15]Detection of Wheat Powdery Mildew by Differentiating Background Factors using Hyperspectral Imaging. Zhang, Dongyan,Zhang, Lifu,Zhang, Dongyan,Wang, Xiu,Zhang, Dongyan,Wang, Xiu,Lin, Fenfang,Huang, Yanbo. 2016

[16]Molecular characterisation of the broad-spectrum resistance to powdery mildew conferred by the Stpk-V gene from the wild species Haynaldia villosa. Qian, C.,Cui, C.,Wang, X.,Zhou, C.,Hu, P.,Li, M.,Li, R.,Xiao, J.,Wang, X.,Chen, P.,Xing, L.,Cao, A.,Qian, C.. 2017

[17]Gene expression profiling related to powdery mildew resistance in wheat with the method of suppression subtractive hybridization. Luo, M,Kong, XY,Huo, NX,Zhou, RH,Jia, JZ. 2002

[18]New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases. Huang, Wenjiang,Guan, Qingsong,Guan, Qingsong,Zhao, Jinling,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Luo, Juhua,Zhang, Jingcheng. 2014

[19]Control of Powdery Mildew in Organic Greenhouse Melon Cultivation. Qin, F. F.,Xu, H. L.,Xu, Q. C.. 2011

[20]Two major er1 alleles confer powdery mildew resistance in three pea cultivars bred in Yunnan Province, China. Sun, Suli,Duan, Canxing,Zhu, Zhendong,He, Yuhua,Dai, Cheng. 2016

作者其他论文 更多>>