Different maternal origins of Japanese lowland and upland rice populations

文献类型: 外文期刊

第一作者: Ishikawa, R

作者: Ishikawa, R;Sato, YI;Tang, T;Nakamura, I

作者机构:

关键词: nuclear genotype;non-coding cp DNA;upland rice;Oryza sativa L.

期刊名称:THEORETICAL AND APPLIED GENETICS ( 影响因子:5.699; 五年影响因子:5.565 )

ISSN: 0040-5752

年卷期: 2002 年 104 卷 6-7 期

页码:

收录情况: SCI

摘要: Plastid subtype ID (PS-ID) sequences were determined from sequence data based on CA repeats between genes rpl16 and rpl14 in Japanese lowland and upland cultivars. The PS-ID sequences of Japanese rice cultivars showed that there are different maternal origins between lowland and upland cultivars. One subtype, 6C7A, of PS-ID sequences was predominant in all but one Japanese lowland cultivar and carried a combination of the indica-specific subtype 8C8A and japonica-specific nuclear markers for the isozyme genotype. It is probably a nuclear-cytoplasmic recombinant resulting from natural out-crossing and succeeding self-pollination. The origin of the plastid was re-confirmed by the existence of an indica-specific deletion in the plastid genome. In contrast, the Japanese upland cultivars showed two subtypes, 7C6A and 6C7A, of PS-ID sequences. An upland-specific isozyme allele as a nuclear marker was equally predominant in cultivars carrying each subtype. The existence of these particular upland-specific nuclear and cytoplasmic genotypes suggests that the origin of Japanese upland cultivars is different from that of Japanese lowland cultivars. Cultivars carrying the upland-specific nuclear genotype are common in Southeast Asia, but the combination of the upland-specific nuclear and cytoplasmic genotypes which is the same as the Japanese upland predominant type was found in cultivars only in Taiwan and Indonesia. Japanese upland cultivars are closely related to those cultivars.

分类号:

  • 相关文献

[1]A genomic perspective on the important genetic mechanisms of upland adaptation of rice. Lyu, Jun,Gou, Zhiheng,Wang, Wen,Li, Baoye,Zhang, Shilai,Zhang, Jing,Tao, Dayun,Huang, Wangqi,Hu, Fengyi,He, Weiming,Meng, Liyun,Li, Xin. 2014

[2]Genetic resources of primitive upland rice in Laos. Ishikawa, R,Yamanaka, S,Kanyavong, K,Fukuta, Y,Sato, YI,Tang, L,Sato, T. 2002

[3]Influence of two allelochemicals from Ageratina adenophora Sprengel on ABA, IAA and ZR contents in roots of upland rice seedlings. Liu, Wan-Xue,Guo, Jianying,Yang, Guo-Qing.

[4]Genealogical analysis of IRAT upland rice varieties. Hu, FY,Tao, DY,Yang, GF,Yang, JY. 1997

[5]Introduction and utilization of IRAT/CIRAD upland rice cultivars. Tao, DY,Hu, FY,Yang, GF,Yang, JY. 1997

[6]Farmers' Adoption of Improved Upland Rice Technologies for Sustainable Mountain Development in Southern Yunnan. Wang, Huaiyu,Pandey, Sushil,Velasco, Lourdes E.,Hu, Fengyi,Xu, Peng,Zhou, Jiawu,Li, Jing,Deng, Xianneng,Feng, Lu,Tao, Dayun,Wen, Lu,Li, Jian,Li, Yun,Ding, Shijun.

[7]QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross. Mu, P,Li, ZC,Li, CP,Zhang, HL,Wu, CM,Li, C,Wang, XK.

[8]Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Ai, YW,Zhang, FS,Lu, SH,Zeng, XZ,Fan, MS. 2005

[9]Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Von Wettstein, D.,Kou, H. P.,Li, Y.,Song, X. X.,Ou, X. F.,Liu, B.,Kou, H. P.,Li, Y.,Song, X. X.,Ou, X. F.,Liu, B.,Kou, H. P.,Ma, J.,Xing, S. C.. 2011

[10]A simplified genomic DNA extraction protocol for pre-germination genotyping in rice. Duan, Y. B.,Zhao, F. L.,Chen, H. D.,Sheng, W.,Teng, J. T.,Zhang, A. M.,Xue, J. P.,Li, H.,Ni, D. H.,Wei, P. C.. 2015

[11]Inheritance of resistance to rice stripe virus in rice line 'BL 1'. Ise, K,Ishikawa, K,Li, CY,Ye, CR. 2002

[12]Genetic dissection of QTL against phosphate deficiency in the hybrid rice 'Xieyou9308'. Zhang, Yingxin,Anis, Galal Bakr,Wu, Weiming,Yu, Ning,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Wang, Ruci,Zhang, Yingxin,Wu, Weiming,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Anis, Galal Bakr. 2018

[13]Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Shi, Zhenyuan,Rao, Yuchun,Xu, Jie,Hu, Shikai,Fang, Yunxia,Yu, Haiping,Pan, Jiangjie,Liu, Ruifang,Ren, Deyong,Wang, Xiaohu,Zhu, Yangzhou,Zhu, Li,Dong, Guojun,Zhang, Guangheng,Zeng, Dali,Guo, Longbiao,Hu, Jiang,Qian, Qian,Rao, Yuchun,Zhu, Yangzhou,Xu, Jie. 2015

[14]Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Shi, ZhenYing,Wang, Jiang,Wan, XinShan,Shen, GeZhi,Wang, XinQi,Zhang, JingLiu. 2007

[15]Cytoplasm and cytoplasm-nucleus interactions affect agronomic traits in japonica rice. Tao, DY,Hu, FY,Yang, JY,Yang, GF,Yang, YQ,Xu, P,Li, J,Ye, CR,Dai, LY. 2004

[16]Density alteration of nutrient elements in rice grains of a low phytate mutant. Ren, Xue-Liang,Liu, Qing-Long,Fu, Hao-Wei,Wu, Dian-xing,Shu, Qing-Yao. 2007

[17]Analysis of QTLs for panicle exsertion and its relationship with yield and yield-related traits in rice (Oryza sativa L.). Zhao, C. F.,Chen, T.,Zhao, Q. Y.,Zhou, L. H.,Zhao, L.,Zhang, Y. D.,Zhu, Z.,Yao, S.,Wang, C. L.. 2016

[18]Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. Chen, Tao,Zhang, Yadong,Zhao, Ling,Zhu, Zhen,Lin, Jing,Zhang, Suobing,Wang, Cailin. 2009

[19]An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Duan, Yongbo,Li, Hao,Li, Juan,Ni, Dahu,Song, Fengshun,Li, Li,Yang, Jianbo,Duan, Yongbo,Song, Fengshun,Zhai, Chenguang,Mei, Wenqian,Gui, Huaping,Zhang, Wanggen,Li, Hao,Li, Juan,Ni, Dahu. 2012

[20]Identification and Expression of Genes Involved in Race-specific Blast Resistance in Rice. Hu, Hai-Yan,Zheng, Kang-Le,Zhuang, Jie-Yun,Zheng, Kang-Le,Zhuang, Jie-Yun,Chai, Rong-Yao,Li, Yu-Chuan. 2010

作者其他论文 更多>>