The PhoR/PhoP two-component system regulates fengycin production in Bacillus subtilis NCD-2 under low-phosphate conditions

文献类型: 外文期刊

第一作者: Guo Qing-gang

作者: Guo Qing-gang;Dong Li-hong;Wang Pei-pei;Li She-zeng;Zhao Wei-song;Lu Xiu-yun;Zhang Xiao-yun;Ma Ping

作者机构:

关键词: Bacillus subtilis;two-component system;lipopeptides;transcriptional factor;PhoR/PhoP

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2018 年 17 卷 1 期

页码:

收录情况: SCI

摘要: Bacillus subtilis strain NCD-2 is an excellent biocontrol agent for plant soil-borne diseases, and the lipopeptide fengycin is one of the active antifungal compounds in strain NCD-2. The regulator PhoP and its sensor kinase PhoR compose a two-component system in B. subtilis. In this study, the phoR-and phoP-knockout mutants were constructed by in-frame deletion and the role of PhoR/PhoP on the production of fengycin was determined. Inactivation of phoR or phoP in B. subtilis decreased its inhibition ability against Botrytis cinerea growth in vitro compared to the strain NCD-2 wild type. The lipopeptides were extracted from strain NCD-2 wild type and its mutant strains by hydrochloric acid precipitate, and the lipopeptides from phoR-null mutant or phoP-null mutant almost lost the inhibition ability against B. cinerea growth compared to the lipopeptides from strain NCD-2 wild type. Fast protein liquid chromatography (FPLC) analysis of the lipopeptides showed that inactivation of phoR or phoP genes reduced the production of fengycin by strain NCD-2. The fengycin production abilities were compared for bacteria under low-phosphate medium (LPM) and high-phosphate medium (HPM), respectively. Results indicated that the regulation of fengycin production by the PhoR/PhoP two-component system occurred in LPM but not in HPM. Reverse transcriptional-PCR confirmed that the fengycin synthetase gene fenC was positively regulated by phoP when cultured in LPM. All of these characteristics could be partially restored by complementation of intact phoR or phoP gene in the mutant. These data indicated that the PhoR/PhoP two-component system greatly regulated fengycin production and antifungal ability in B. subtilis NCD-2 mainly under low-phosphate conditions.

分类号:

  • 相关文献

[1]Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp bulgaricus. Pang, Xiaoyang,Liu, Cuiping,Pang, Xiaoyang,Zhang, Shuwen,Liu, Lu,Lu, Jing,Lv, Jiaping,Lyu, Pengcheng,Zhang, Shuwen,Ma, Changlu.

[2]The 1910HK/RR two-component system is essential for the virulence of Streptococcus suis serotype 2. Yuan, Fangyan,Tan, Chen,Chen, Huanchun,Bei, Weicheng,Yuan, Fangyan,Liu, Zewen,Yang, Keli,Zhou, Danna,Liu, Wei,Duan, Zhengying,Guo, Rui,Tian, Yongxiang,Tan, Chen,Chen, Huanchun,Bei, Weicheng.

[3]BACILLUS AMYLOLIQUEFACIENS Lx-11, A POTENTIAL BIOCONTROL AGENT AGAINST RICE BACTERIAL LEAF STREAK. Zhang, R. S.,Chen, Z. Y.,Zhang, R. S.,Liu, Y. F.,Luo, C. P.,Wang, X. Y.,Liu, Y. Z.,Qiao, J. Q.,Yu, J. J.,Chen, Z. Y.. 2012

[4]Study of the anti-sapstain fungus activity of Bacillus amyloliquefaciens CGMCC 5569 associated with Ginkgo biloba and identification of its active components. Yuan, Bo,Wang, Zhe,Qin, Sheng,Zhao, Gui-Hua,Feng, You-Jian,Wei, Li-Hui,Jiang, Ji-Hong,Wei, Li-Hui,Zhao, Gui-Hua.

[5]Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Zhang, Xiaoyun,Li, Baoqing,Guo, Qinggang,Lu, Xiuyun,Li, Shezeng,Ma, Ping,Wang, Ye.

[6]DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Wang, Peipei,Wang, Peipei,Guo, Qinggang,Li, Shezeng,Lu, Xiuyun,Zhang, Xiaoyun,Ma, Ping,Ma, Yinan.

[7]Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.. Diao, Wei-Ping,Wang, Shu-Bin,Liu, Jin-Bing,Pan, Bao-Gui,Guo, Guang-Jun,Wei, Ge,Diao, Wei-Ping,Snyder, John C.. 2016

[8]The wheat MYB-related transcription factor TaMYB72 promotes flowering in rice. Zhang, Lichao,Liu, Guoxiang,Jia, Jizeng,Zhao, Guangyao,Xia, Chuan,Zhang, Lina,Li, Fu,Zhang, Qiang,Dong, Chunhao,Han, Longzhi,Guo, Xiuping,Zhang, Xin,Liu, Xu,Kong, Xiuying,Wu, Jinxia,Gao, Shuangcheng. 2016

[9]Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Zhuang, Jing,Cai, Bin,Peng, Ri-He,Zhu, Bo,Jin, Xiao-Feng,Xue, Yong,Gao, Feng,Fu, Xiao-Yan,Tian, Yong-Sheng,Zhao, Wei,Xiong, Ai-Sheng,Yao, Quan-Hong,Zhuang, Jing,Cai, Bin,Qiao, Yu-Shan,Zhang, Zhen. 2008

[10]Phylogenetic and functional analysis of the basic transcription factor gene BTF3 from Jatropha curcas. Peng, Xianjun,Wang, Qi,Liu, Hui,Shen, Shihua,Wang, Qi.

[11]Molecular mechanism of BjCHI1-mediated plant defense against Botrytis cinerea infection. Gao, Ying,Zhao, Kaijun. 2017

[12]Characterization of a cold responsive HbICE1 gene from rubber trees. Deng, Xiao Min,Wang, Jian Xiao,Li, Yan,Wang, Jing,Tian, Wei-Min,Deng, Xiao Min,Wang, Jian Xiao,Tian, Wei-Min.

[13]Genome-wide comparative analysis of digital gene expression tag profiles during maize ear development. Liu, Hongjun,Qin, Cheng,Zhang, Yongzhong,Liu, Sisi,Shen, Yaou,Lin, Haijian,Zhang, Zhiming,Pan, Guangtang,Yang, Xuerong,Liao, Xinhui,Zhou, Huangkai,Zuo, Tao,Qin, Cheng,Cao, Shiliang,Dong, Ling,Luebberstedt, Thomas.

[14]Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Farzaneh, Mohsen,Sedaghat, Narges,Ahmadzadeh, Masoud,Javan-Nikkhah, Mohammad,Farzaneh, Mohsen,Shi, Zhi-Qi,Farzaneh, Mohsen,Ghassempour, Alireza,Mirabolfathy, Mansoureh. 2012

[15]Synergistic effects of the combined application of Bacillus subtilis H158 and strobilurins for rice sheath blight control. Liu, Lianmeng,Liang, Mengqi,Li, Lu,Sun, Lei,Xu, Yihua,Gao, Jian,Wang, Ling,Hou, Yuxuan,Huang, Shiwen,Liu, Lianmeng,Li, Lu,Sun, Lei,Xu, Yihua,Huang, Shiwen. 2018

[16]Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1. Farzaneh, Mohsen,Ghassempour, Alireza,Farzaneh, Mohsen,Shi, Zhi-Qi,Hu, Liang-Bin,Ahmadzadeh, Masoud,Hu, Liang-Bin. 2016

[17]Chemical composition and in vitro antioxidant property of peptides produced from cottonseed meal by solid-state fermentation. Sun, Hong,Yao, Xiaohong,Wang, Xin,Wu, Yifei,Liu, Yong,Tang, Jiangwu,Feng, Jie. 2015

[18]An enhanced vector-free allele exchange (VFAE) mutagenesis protocol for genome editing in a wide range of bacterial species. Gomaa, Ahmed E.,Zhang, Chen,Yang, Zhimin,Shang, Liguo,Jiang, Shijie,Deng, Zhiping,Zhan, Yuhua,Lu, Wei,Lin, Min,Yan, Yongliang. 2017

[19]Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Chen, Zhiyi,Ng, T. B.,Zhang, Jie,Zhou, Mingguo,Song, Fuping,Lu, Fan,Liu, Youzhou. 2007

[20]Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Roberts, Daniel P.,Maul, Jude E.,Emche, Sarah E.,McKenna, Laurie F.,Buyer, Jeffrey S.,Hu, Xiaojia,Liao, Xing,Guo, Xuelan,Liu, Yeying,Liu, Shengyi. 2011

作者其他论文 更多>>