Extending growing period is limited to offsetting negative effects of climate changes on maize yield in the North China Plain

文献类型: 外文期刊

第一作者: Huang, Shoubing

作者: Huang, Shoubing;Li, Yebei;Tao, Hongbin;Wang, Pu;Lv, Lihua;Zhu, Jincheng

作者机构:

关键词: Corn;Cultivar;Climate change;Growing period;Plant density

期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )

ISSN: 0378-4290

年卷期: 2018 年 215 卷

页码:

收录情况: SCI

摘要: Climate changes in temperature, solar radiation, and precipitation potentially interrupt progressive improvement in crop yield. Genetic and agronomic strategies to adapt climate changes were proposed in previous studies, but were rarely evaluated. In this study, meteorological data from 1954 to 2014 at one representative station in the North China Plain (NCP), model simulation of Hybrid-Maize, and a field experiment were combined together to detect climate change impacts on maize yield and to assess the adaptive effects of cultivars. Three maize cultivars with contrasting lengths of growing period were grown at three specific plant densities. Cultivar with a long growing period (LG) was grown at 67500 (optimal density), 82500, and 97500 plant ha(-1), medium-growing (MG) cultivar at 82500 (optimal), 97500, and 112500 plant ha(-1), and short-growing (SG) cultivar at 97500 (optimal), 112500, and 124500 plant ha(-1). During the past six decades, temperature increased and solar radiation decreased significantly in the total, vegetative, and reproductive growing periods of maize in the NCP with a slight decline in precipitation. These climate changes significantly reduced yield at a rate of 30.8, 31.3, and 25.0 kg ha(-1) yr(-1), respectively, for SG, MG, and LG maize cultivars. Decline in growing degree days (GDD) use efficiency of LG cultivar with changing climate was one-fold slower than that of SG and MG cultivars. MG maize cultivar was estimated to produce the highest grain yield in NCP owing to its relatively long growing period and high tolerance of plant density. LG maize cultivar has a larger potential to adapt changing climate, but has a larger difficulty in improving yield because of lower tolerance of high plant density. Improvement of plant architecture in space and in time is expected to resolve the conflict between adapting climate changes and tolerating high plant density in maize.

分类号:

  • 相关文献

[1]Effects of climate change and cultivar on summer maize phenology. Chen, F.,Wang, Zh.,Chen, J.,Li, Y.,Wang, Zh.,Li, C.,Zhang, L.. 2016

[2]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[3]Effects of genotypes and plant density on yield, yield components and photosynthesis in Bt transgenic cotton. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM. 2006

[4]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[5]Effects of planting system, plant density and flower removal on yield and quality of hybrid seed in cotton. Dong, HZ,Zhang, DM,Tang, W,Li, WJ,Li, ZH. 2005

[6]Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Dong, Hezhong,Li, Weijiang,Eneji, A. Egrinya,Zhang, Dongmei,Eneji, A. Egrinya. 2012

[7]Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Dong, Hezhong,Kong, Xiangqiang,Li, Weijiang,Tang, Wei,Zhang, Dongmei. 2010

[8]Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model. Lili Mao,Lizhen Zhang,Jochem B. Evers,Michael Henke,Wopke van der Werf,Shaodong Liu,Siping Zhang,Xinhua Zhao,Baomin Wang,Zhaohu Li.

[9]Effects of Irrigation and Plant Density on Cotton Within-Boll Yield Components. Lu Feng,Vinicius B. Bufon,Cory I. Mills,Eric Hequet,James P. Bordovsky,;Wayne Keeling,Randy Boman,Craig W. Bednarz.

[10]Phenolics and Antioxidant Activity of Mulberry Leaves Depend on Cultivar and Harvest Month in Southern China. Zou, Yuxiao,Sun, Yuanming,Zou, Yuxiao,Liao, Shentai,Shen, Weizhi,Liu, Fan,Tang, Cuiming,Chen, Chung-Yen Oliver. 2012

[11]Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Zhang, Shujie,Liao, Xing,Zhang, Chunlei,Xu, Huajun. 2012

[12]The changes of beta-glucan content and beta-glucanase activity in barley before and after malting and their relationships to malt qualities. Wang, JM,Zhang, GP,Chen, JX,Wu, FB. 2004

[13]Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. Qian, Chunrong,Yu, Yang,Gong, Xiujie,Jiang, Yubo,Zhao, Yang,Yang, Zhongliang,Hao, Yubo,Li, Liang,Song, Zhenwei,Zhang, Weijian. 2016

[14]Rot Risk Factors for Tomatoes during Storage. Zhang Xuejie,Wang Jinyu,Suyanling,Du Yongchen,Holmes, R.,Kreidl, S.. 2012

[15]Monitoring the Plant Density of Cotton with Remotely Sensed Data. Bai, Junhua,Li, Shaokun,Bai, Junhua,Li, Jing,Bai, Junhua. 2011

[16]Integration of cropping practices and herbicides improves weed management in dry bean (Phaseolus vulgaris). Blackshaw, RE,Molnar, LJ,Muendel, HH,Saindon, G,Li, XJ. 2000

[17]Development of Cold Resistant Apple Rootstocks in China. Zhang, M. J.,Ding, L. H.,Wang, Q.,Li, Y. B.,Yan, X. K.,Xing, G. J.. 2011

[18]Selection and Breeding of 'Guinuo' (Litchi chinensis Sonn.) - a New Cultivar of Big Fruit Size. Peng, H. X.,Lu, G. F.,Xu, N.,Pan, J. C.,Liu, B. H.. 2010

[19]Comparison of the Deformed Fruit Rates in the First and Second Runner Generations of Micropropagated Plants. Wang, G. X.,Chang, L. L.,Dong, J.,Zhong, C. F.,Wang, L. N.,Zhang, Y. T..

[20]NITROGEN DOSES AND PLANT DENSITY AFFECT PHENOLOGY AND YIELD OF SWEET CORN. Khan, Zafar Hayat,Khalil, Shad Khan,Khan, Zafar Hayat,Iqbal, Amjad,Shah, Farooq,Iqbal, Amjad,Ullah, Ikram,Ali, Muhammad,Shah, Tariq,Wu, Wei. 2017

作者其他论文 更多>>