Characterization of Genetic Basis on Synergistic Interactions between Root Architecture and Biological Nitrogen Fixation in Soybean

文献类型: 外文期刊

第一作者: Yang, Yongqing

作者: Yang, Yongqing;Yang, Yongqing;Li, Xinxin;Ai, Wenqin;Liu, Dong;Qi, Wandong;Liao, Hong;Zhao, Qingsong;Zhang, Mengchen;Yang, Chunyan;Ai, Wenqin;Liu, Dong;Qi, Wandong

作者机构:

关键词: root architecture;biological nitrogen fixation;soybean;QTLs;synergistic interaction;yield

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Soybean [Glycine max (L.) Merr] is an important legume crop and its yield largely depends on root architecture (RA) and biological nitrogen fixation (BNF). However, the relationship between RA and BNF, and its genetics behind remain unclear. Here, two soybean genotypes contrasting in RA and their 175 F-9:11 recombinant inbred lines (RILs) were evaluated in field. The shallow-root parent, JD12, had better nodulation and higher yield than the deep-root parent, NF58. Strong correlations between shoot dry weight (SDW) and RA or BNF traits existed in the RILs, and the shallow-root group had more and heavier nodules, as well as higher SDW. After inoculating with rhizobia, roots became shallower and bigger, showing strong synergistic interactions between RA and BNF. In total, 70 QTLs were identified for the 21 tested traits. Among them, qBNFRA-C2, qBNF-RA-O, and qBNF-RA-B1, were newly identified QTLs for BNF and/or RA traits in soybean, which co-located with the QTLs for SDW detected presently, and with the QTLs for yield identified previously. The results together suggest that there are synergistic interactions between RA and BNF, and the QTLs identified here could be used for breeding new soybean varieties with higher yields through optimization of RA traits and BNF capacity.

分类号:

  • 相关文献

[1]Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Zhao, J,Fu, JB,Liao, H,He, Y,Nian, H,Hu, YM,Qiu, LJ,Dong, YS,Yan, XL.

[2]Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Yang, Zhe,Xin, Dawei,Sun, Yanan,Qi, Zhaoming,Chen, Qingshan,Yang, Zhe,Jiang, Hongwei,Han, Xue,Yang, Zhe,Liu, Chunyan,Hu, Guohua.

[3]Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean. Zhang, Wen Bo,Xin, Da Wei,Chen, Qing Shan,Zhang, Wen Bo,Jiang, Hong Wei,Liu, Chun Yan,Hu, Guo Hua,Zhang, Wen Bo,Qiu, Peng Cheng,Li, Can Dong,Hu, Guo Hua.

[4]Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1) from Glycine max. Wang, Miao,Wang, Qingyu,Sun, Shi,Wu, Cunxiang,Han, Tianfu. 2014

[5]Effects of wheat and soybean stubbles on soil sickness in continuous cropping of cucumber. Feng, T.,Wang, Y. Y.,Zhang, Y. H.,Shi, X. H.,Qin, C. H.,Zhang, S. A.,Jin, S. C.,Zhang, H.,Zhang, J.,Zhang, S. A.,Zhang, J.,Qin, C. H.. 2016

[6]Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis. Nian, Xiao-ge,He, Yu-rong,Zhao, Rui,Lu, Li-hua.

[7]Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Fan, Fenliang,Zhang, Fusuo,Song, Yana,Sun, Jianhao,Bao, Xingguo,Guo, Tianwen,Li, Long. 2006

[8]Plant Growth-Promoting Nitrogen-Fixing Enterobacteria Are in Association with Sugarcane Plants Growing in Guangxi, China. Zhang, Xincheng,Yang, Litao,Li, Yangrui,Lin, Li,Hu, Chunjin,Li, Yangrui,Lin, Li,Yang, Litao,Li, Yangrui,Li, Zhengyi,Chang, Siping,An, Qianli.

[9]Interspecies Transfer and Regulation of Pseudomonas stutzeri A1501 Nitrogen Fixation Island in Escherichia coli. Han, Yunlei,Yang, Zhirong,Han, Yunlei,Chen, Qinghua,Zhan, Yuhua,Liu, Wei,Lu, Wei,Lin, Min,Yan, Yongliang,Lu, Na,Zhu, Baoli,Chen, Qinghua,Liu, Wei.

[10]Effect of nitrogen fertilization on growth and nitrogen dynamics of Chamaecrista rotundifolia cv. Minyin on red soil in southern China. Weng, Boqi,Wang, Yixiang,Li, Yanchun,Li, Yuesen.

[11]Mycorrhizal and Non-mycorrhizal Responses to Salt Stress in Trifoliate Orange: Plant Growth, Root Architecture and Soluble Sugar Accumulation. Zou, Ying-Ning,Wu, Qiang-Sheng,Liang, Yong-Chao,Wu, Qiang-Sheng. 2013

[12]Genetic dissection of seminal root architecture in elite durum wheat germplasm. Sanguineti, M. C.,Li, S.,Maccaferri, M.,Corneti, S.,Rotondo, F.,Chiari, T.,Tuberosa, R.. 2007

[13]Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation. Zhang, Hongzhi,Khan, Aziz,Luo, Honghai,Zhang, Hongzhi,Tan, Daniel K. Y.. 2017

[14]Foxtail Millet [Setaria italica (L.) Beauv.] Grown under Low Nitrogen Shows a Smaller Root System, Enhanced Biomass Accumulation, and Nitrate Transporter Expression. Nadeem, Faisal,Ahmad, Zeeshan,Wang, Ruifeng,Han, Jienan,Shen, Qi,Chang, Feiran,Zhang, Fusuo,Li, Xuexian,Diao, Xianmin. 2018

[15]Exogenous GR24 Alleviates Cadmium Toxicity by Reducing Cadmium Uptake in Switchgrass (Panicum virgatum) Seedlings. Tai, Zhenglan,Yin, Xinqiang,Fang, Zhigang,Lou, Laiqing,Cai, Qingsheng,Fang, Zhigang,Shi, Gaoling. 2017

[16]Overexpression of wheat gene TaMOR improves root system architecture and grain yield in Oryza sativa. Li, Bo,Liu, Dan,Li, Qiaoru,Mao, Xinguo,Li, Ang,Wang, Jingyi,Chang, Xiaoping,Jing, Ruilian.

[17]Melatonin Regulates Root Architecture by Modulating Auxin Response in Rice. Liang, Chengzhen,Guo, Sandui,Zhang, Rui,Li, Aifu,Yu, Hua,Li, Wenzhen,Liang, Chengzhi,Chu, Chengcai. 2017

[18]Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Xue, Yanfang,Xia, Haiyong,Xia, Haiyong,Zhang, Zheng,Christie, Peter,Li, Long,Tang, Caixian.

[19]Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. Liang, Qingzhi,Li, Pengbo,Hu, Cheng,Hua, Hua,Li, Zhaohu,Hua, Jinping,Rong, Yihua,Wang, Kunbo.

[20]Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (Gossypium hirsutum L.). Shang, Lianguang,Liang, Qingzhi,Wang, Xiaocui,Abduweli, Abdugheni,Ma, Lingling,Cai, Shihu,Hua, Jinping,Wang, Yumei,Wang, Kunbo.

作者其他论文 更多>>