Estimating N status of winter wheat using a handheld spectrometer in the North China Plain

文献类型: 外文期刊

第一作者: Li, Fei

作者: Li, Fei;Jia, Liangliang;Miao, Yuxin;Yu, Zihui;Chen, Xinping;Zhang, Fusuo;Li, Fei;Gnyp, Martin L.;Koppe, Wolfgang;Bareth, Georg;Jia, Liangliang

作者机构:

关键词: vegetation indices;N uptake;over-fertilization;field spectrometer

期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )

ISSN: 0378-4290

年卷期: 2008 年 106 卷 1 期

页码:

收录情况: SCI

摘要: Excessive nitrogen (N) fertilizer application is very common in the North China Plain. Diagnosis of in-season N status in crops is critical for precision N management in this area. Remote sensing, as a timely and nondestructive tool, could be an alternative to traditional plant testing for diagnosing crop N status. The objectives of this study were to determine which vegetation indices could be used to estimate N status in winter wheat (Triticum aestivum L.) under high N input conditions, develop models to predict winter wheat N uptake using spectral vegetation indices and validate the models with data from farmers' fields. An N rate experiment and a variety-N experiment were conducted in Huimin, Shandong Province from 2005/2006 to 2006/2007 to develop the models. Positive linear relationships between simple ratio vegetation indices (red vegetation index, RVI and green vegetation index, GVI) and N uptake were observed independent of growth stages and varieties (R-2, 0.48-0.74). In contrast, the relationships between normalized difference vegetation indices (NDVI and GNDVI), red and green normalized difference vegetation index (RGNDI), and red and green ratio vegetation index (RGVI) were exponentially related to N uptake (R-2, 0.43-0.79). Subsequently, 69 farmers' fields in four different villages were selected as datasets to validate the developed models. The results indicated that the prediction using RVI had the highest coefficient of determination (R-2, 0.60), the lowest root mean square error (RMSE, 39.7 kg N ha(-1)) and relative error (RE, 30.5%) across different years, varieties and growth stages. We conclude that RVI can be used to estimate nitrogen status for winter wheat in over-fertilized farmers' fields before heading. (C) 2007 Elsevier B.V. All rights reserved.

分类号:

  • 相关文献

[1]Current Soil Nutrient Status of Intensively Managed Greenhouses. Hu Yun-Cai,Poschenrieder, C.,Schmidhalter, U.,Song Zhi-Wen,Lu Wen-Long.

[2]Characterizing N uptake and use efficiency in rice as influenced by environments. Xie, Xiaobing,Huang, Min,Zhou, Xuefeng,Zhang, Ruichun,Chen, Jiana,Wu, Dandan,Xia, Bing,Zou, Yingbin,Jiang, Peng,Xiong, Hong,Xu, Fuxian. 2016

[3]Plough pan impacts maize grain yield, carbon assimilation, and nitrogen uptake in the corn belt of Northeast China. Cao, Qingjun,Li, Gang,Yang, Fentuan,Chen, Xifeng,Diallo, Lamine. 2017

[4]Yield and nutrient uptake of barley and camelina amended with manure from cattle fed barley, triticale dried distillers grains with solubles, and flaxseed diets. Esfahani, Ahmadreza,Luo, Yang,Li, Chunli,Benke, Monica B.,Hao, Xiying,Larney, Francis J.,Luo, Yang.

[5]Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain. Zhang, Yitao,Wang, Hongyuan,Lei, Qiuliang,Zhang, Jizong,Zhai, Limei,Wu, Shuxia,Liu, Hongbin,Zhang, Yitao,Luo, Jiafa,Lindsey, Stuart,Zhang, Jingsuo,Liu, Xiaoxia,Ren, Tianzhi. 2018

[6]N-15 tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Wang, Danying,Xu, Chunmei,Yan, Jinxiang,Zhang, Xiaoguo,Chen, Song,Wang, Lei,Zhang, Xiufu,Chauhan, Bhagirath S..

[7]Crop Yield, N Uptake and Nitrates in a Fluvo-Aquic Soil Profile. Zhang, SX,Li, XY,Li, XP,Yuan, FM,Yao, ZH,Sun, YL,Zhang, FD.

[8]Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields?. Chen, Gui,Shi, Weiming,Chen, Gui,Chen, Gui,Cheng, Wangda,Chen, Ying,Zhao, Guohua,Guo, Shiwei,Zhang, Hailin.

[9]Fertilizer nitrogen uptake by rice increased by biochar application. Qin, Huadong,Jiang, Ligeng,Yang, Liu,Zou, Yingbin,Zou, Yingbin.

[10]Closing the yield gap and achieving high N use efficiency and low apparent N losses. Wang, Meng,Cui, Zhenling,Chen, Xinping,Wang, Lichun,Xie, Jiagui,Hou, Yunpeng.

[11]Effect of N Management on Root Yield and N Uptake of Radishes in Southern China. Yuan, Wei-Ling,Deng, Xiao-hui,Gan, Cai-xia,Cui, Lei,Wang, Qing-fang,Yuan, Shang-yong.

[12]MONITORING WINTER WHEAT MATURITY BY HYPERSPECTRAL VEGETATION INDICES. Wang, Qian,Huang, Yuanfang,Wang, Qian,Li, Cunjun,Wang, Jihua,Song, Xiaoyu,Huang, Wenjiang. 2012

[13]Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain. Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Koppe, Wolfgang,Chen, Xinping,Zhang, Fusuo,Li, Fei,Miao, Yuxin,Miao, Yuxin. 2010

[14]Multi-Temporal Hyperspectral and Radar Remote Sensing for Estimating Winter Wheat Biomass in the North China Plain. Hennig, Simon D.,Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Chen, Xinping,Li, Fei,Miao, Yuxin,Jia, Liangliang. 2012

[15]New Vegetation Index Fusing Visible-Infrared and Shortwave Infrared Spectral Feature for Winter Wheat LAI Retrieval. Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Bao Yan-song. 2013

[16]Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. Chen, Bangqian,Li, Xiangping,Xiao, Xiangming,Zhao, Bin,Chen, Bangqian,Yang, Chuan,Wu, Zhixiang,Sun, Rui,Lan, Guoyu,Xie, Guishui,Xiao, Xiangming,Dong, Jinwei,Qin, Yuanwei,Xiao, Xiangming,Dong, Jinwei,Qin, Yuanwei,Kou, Weili. 2016

[17]Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy. Song, Xiao,Feng, Wei,He, Li,Zhang, Hai-Yan,Li, Xiao,Wang, Chen-Yang,Guo, Tian-Cai,Song, Xiao,Xu, Duanyang,Wang, Zhi-Jie,Coburn, Craig A..

[18]Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. Li He,Chen Zhong-xin,Jiang Zhi-wei,Wu Wen-bin,Ren Jian-qiang,Liu Bin,Hasi, Tuya,Jiang Zhi-wei,Hasi, Tuya. 2017

[19]Estimation of nitrogen status in middle and bottom layers of winter wheat canopy by using ground-measured canopy reflectance. Wang, ZJ,Wang, JH,Liu, LY,Huang, WJ,Zhao, CJ,Lu, YL. 2005

[20]Nitrogen Status Estimation of Winter Wheat by Using an IKONOS Satellite Image in the North China Plain. Yu, Zihui,Li, Fei,Miao, Yuxin,Chen, Xinping,Zhang, Fusuo,Jia, Liangliang,Gnyp, Martin,Koppe, Wolfgang,Bareth, Georg. 2012

作者其他论文 更多>>