A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay

文献类型: 外文期刊

第一作者: Shi, Qiaoqiao

作者: Shi, Qiaoqiao;Zhang, Gaiping;Shi, Qiaoqiao;Sun, Yaning;Deng, Ruiguang;Teng, Man;Li, Qingmei;Yang, Yanyan;Hu, Xiaofei;Zhang, Gaiping;Shi, Qiaoqiao;Huang, Jie;Zhang, Zhijun;Zhang, Gaiping

作者机构:

关键词: Gold nanoparticles;4-aminothiophenol;Monoclonal antibody;Broad-specificity;Optimization;Spectra;Standard curve;Cross-reactivity;Affix recovery;Milk analysis

期刊名称:MICROCHIMICA ACTA ( 影响因子:5.833; 五年影响因子:5.357 )

ISSN: 0026-3672

年卷期: 2018 年 185 卷 2 期

页码:

收录情况: SCI

摘要: The authors describe an ultrasensitive method for simultaneous detection of neomycin (NEO) and quinolones antibiotics (QNS). It is based on the use of (a) two immuno-nanoprobes (a probe for NEO and a probe for QNS), (b) surface-enhanced Raman scattering (SERS) detection, and (c), a portable lateral flow assay (LFA). The two probes consist of gold nanoparticles (AuNPs) conjugated to the Raman active molecule 4-aminothiophenol (PATP), and to monoclonal antibody against NEO (NEO mAb) or against NOR (NOR mAb). Quantitative detection of NEO and QNS was realized via SERS of the PATP-coated AuNPs captured in the test line of a LFA. Under optimized condition, the visual limits of LFA are 10 ng.mL(-1) for NEO and 200 ng.mL(-1) for NOR, and with LODs down to 0.37 pg.mL(-1) and 0.55 pg.mL(-1) by using SERS. The NEO test line is not interfered by the NEO analogues gentamycin, streptomycin and tobramycin, but the NOR test line suffers from different degrees of cross-reactivity (CR) to 12 common other QNS, the CRs ranging from 1.5% to 136%. The recoveries of NEO and NOR from spiked milk samples ranged between 86% and 121%, with relative standard deviations (RSD) from 3% to 6%. The method is highly sensitive, accurate and effective. It may be applied to simultaneous detection of NEO and 8 QNS, including NOR, enoxacin, ciprofloxacin, ofloxacin, fleroxacin, marbofloxacin, enrofloxacin, and pefloxacin.

分类号:

  • 相关文献

[1]Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model. Dong, Sa,Zhang, Xiao,Liu, Yuan,Zhang, Cunzheng,Xie, Yajing,Zhong, Jianfeng,Xu, Chongxin,Liu, Xianjin,Dong, Sa,Liu, Xianjin.

[2]Monitoring Plastic-Mulched Farmland Using Landsat-8 OLI Imagery. Hasituya,Chen Zhong-xin,Wu Wen-bin,Qing Huang,Hasituya,Chen Zhong-xin,Wu Wen-bin,Qing Huang. 2015

[3]Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes. Liao, Qie Gen,Wei, Ben Hua,Luo, Lin Guang.

[4]Serological detection of bovine ephemeral fever virus using an indirect ELISA based on antigenic site G(1) expressed in Pichia pastoris. Qiu, Chang-Qing.

[5]Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure. Li, Peiwu,Li, Peiwu,Zhang, Qi,Zhang, Wen,Huang, Yanling,Ding, Xiaoxia,Jiang, Jun.

[6]Development and evaluation of a VP3-ELISA for the detection of goose and Muscovy duck parvovirus antibodies. Zhang, Yun,Liu, Ming,Zhang, Dabing,Li, Gang,Tong, Guangzhi. 2010

[7]A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Zhang, Chan,Jiang, Zejun,Jin, Maojun,Chen, Ge,Cao, Xiaolin,Cui, Xueyan,Zhang, Yudan,Li, Ruixing,Wang, Jing,Zhang, Chan,Jiang, Zejun,Jin, Maojun,Chen, Ge,Cao, Xiaolin,Cui, Xueyan,Zhang, Yudan,Li, Ruixing,Wang, Jing,Du, Pengfei,Du, Pengfei,Du, Pengfei,Abd El-Aty, A. M.,Abd El-Aty, A. M.. 2018

[8]Simulation of adsorption of gold nanoparticles carried by gas ascending from the Earth's interior in alluvial cover of the middle-lower reaches of the Yangtze River. Cao, J. J.,Hu, X. Y.,Jiang, Z. T.,Li, H. W.,Zou, X. Z.. 2010

[9]The Applications of Gold Nanoparticle-Initialed Chemiluminescence in Biomedical Detection. Liu, Zezhong,Zhao, Furong,Gao, Shandian,Shao, Junjun,Chang, Huiyun. 2016

[10]Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles. Luan, Yunxia,Chen, Jiayi,Li, Cheng,Fu, Hailong,Ma, Zhihong,Lu, Anxiang,Luan, Yunxia,Chen, Jiayi,Li, Cheng,Fu, Hailong,Ma, Zhihong,Lu, Anxiang,Xie, Gang. 2015

[11]Green synthesis of gold nanoparticles using Citrus maxima peel extract and their catalytic/antibacterial activities. Yuan, Chun-Gang,Huo, Can,Gui, Bing,Cao, Wei-Ping. 2017

[12]Enzymatic reporting of peste des petits ruminants virus genes ligating two specific probes on nanoparticles. Tao, Chunai,Li, Gang,Wang, Yong,Huang, Huaxin,Tao, Chunai,Li, Gang,Wang, Yong,Huang, Huaxin,Wang, Yong.

[13]Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles. Luan, Yunxia,Chen, Jiayi,Li, Cheng,Ping, Hua,Ma, Zhihong,Lu, Anxiang,Xie, Gang.

[14]Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Zheng, Longtang,Lv, Xun,Bi, Yuhai,Zhang, Zhenxing,Wang, Pengfei,Liu, Ruichen,Jiang, Jingwen,Cong, Haolong,Liu, Wenjun,Gao, George F.,Li, Xuebing,Li, Xuebing,Zheng, Longtang,Zhang, Zhenxing,Wang, Pengfei,Jiang, Jingwen,Li, Xuebing,Wei, Jinhua,Du, Yuguang,Wu, Peixing,Liang, Jingnan,Cheng, Wenwen,Jiang, Xingyu,Cao, Hongzhi,Bi, Yuhai,Liu, Wenjun,Gao, George F.,Li, Xuebing,Cheng, Wenwen.

[15]An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Liu, Na,Tan, Yanglan,Wang, Hui,Wu, Aibo,Nie, Dongxia,Zhao, Zhiyong,Liao, Yucai,Sun, Changpo.

[16]Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe. Wang, Peilong,Su, Xiaoou,Zhou, Ying,Zhao, Hong,He, Yujian,He, Yujian.

[17]Ultrasmall Graphene Oxide Supported Gold Nanoparticles as Adjuvants Improve Humoral and Cellular Immunity in Mice. Cao, Yuhua,Ma, Yufei,Zhang, Mengxin,Wang, Haiming,Tu, Xiaolong,Shen, He,Dai, Jianwu,Zhang, Zhijun,Cao, Yuhua,Zhang, Mengxin,Tu, Xiaolong,Shen, He,Wang, Haiming,Guo, Huichen.

[18]Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized beta-cyclodextrin. Li, Shuhuai,Wu, Xuejin,Zhang, Qun,Li, Pingping,Li, Shuhuai,Wu, Xuejin,Zhang, Qun,Li, Pingping.

[19]Highly sensitive detection of triazophos pesticide using a novel bio-bar-code amplification competitive immunoassay in a micro well plate-based platform. Du, Pengfei,Jin, Maojun,Zhang, Chan,Chen, Ge,Cui, Xueyan,Zhang, Yudan,Zhang, Yanxin,Zou, Pan,Jiang, Zejun,Cao, Xiaolin,She, Yongxin,Jin, Fen,Wang, Jing. 2018

[20]Novel triadimenol detection assay based on. fluorescence resonance energy transfer between gold nanoparticles and cadmium telluride quantum dots. Liu, Guangyang,Huang, Xiaodong,Zheng, Shuning,Li, Lingyun,Xu, Donghui,Xu, Xiaomin,Zhang, Yanguo,Lin, Huan. 2018

作者其他论文 更多>>