Effects of the maize C-4 phosphoenolpyruvate carboxylase (ZmPEPC) gene on nitrogen assimilation in transgenic wheat

文献类型: 外文期刊

第一作者: Peng, Chaojun

作者: Peng, Chaojun;Xu, Weigang;Peng, Chaojun;Xu, Weigang;Hu, Lin;Li, Yan;Qi, Xueli;Wang, Huiwei;Hua, Xia;Zhao, Mingzhong

作者机构:

关键词: Wheat;Phosphoenolpyruvate carboxylase;N assimilation;Amino acid metabolism

期刊名称:PLANT GROWTH REGULATION ( 影响因子:3.412; 五年影响因子:3.691 )

ISSN: 0167-6903

年卷期: 2018 年 84 卷 1 期

页码:

收录情况: SCI

摘要: Nitrogen (N) is the primary limiting factor for crop growth, development, and productivity. Transgenic technology is a straightforward strategy for improving N assimilation in crops. The present study assessed the effects of maize C-4 phosphoenolpyruvate carboxylase (ZmPEPC) gene overexpression on N assimilation in three independent transgenic lines and wild-type (WT) wheat (Triticum aestivum L.). The transgenic wheat lines depicted ZmPEPC overexpression and higher PEPC enzyme activity relative to that in the WT. The leaves of the transgenic wheat lines subjected to low N treatment showed an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) expression, content, and carboxylase activity. The transgenic wheat lines also depicted an upregulation of genes associated with the anaplerotic pathway for the TCA cycle, suggesting that more carbon (C) skeleton material is being allocated for N assimilation under low N conditions. Furthermore, ZmPEPC expression in transgenic wheat lines induced the upregulated of genes associated primary N metabolism, including TaNR, TaGS2, TaGOGAT, TaAspAT, and TaASN1. The average total free amino acid content in the transgenic wheat lines was 48.18% higher than that in the WT, and asparagine (Asn), glutamine (Gln), aspartic acid (Asp), and serine (Ser) were also markedly enhanced. In addition, elementary analysis showed that N and C content, and the biomass of the transgenic wheat lines increased with low N treatment. Yield trait analysis indicated that ZmPEPC overexpression improved grain yield by increasing 1000-grain weight. In conclusion, ZmPEPC overexpression in wheat could modulate C metabolism, significantly improve N assimilation, enhances growth, and improves yield under low N conditions.

分类号:

  • 相关文献

[1]Changes of photosynthetic characteristics in relation to leaf senescence in two maize hybrids with different senescent appearance. He, P,Osaki, M,Takebe, M,Shinano, T.

[2]The antisense expression of AhPEPC1 increases seed oil production in peanuts (Arachis hypogaea L.). Pan, L.,Zhang, J.,Wan, Y.,Liu, F.,Pan, L.,Zhang, J.,Chi, X.,Chen, N.,Chen, M.,Wang, M.,Wang, T.,Yang, Z.,Zhang, Z.,Yu, S.,Chi, X.. 2016

[3]Physiological investigation of C-4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. Zhang, Chen,Li, Xia,He, Yafei,Zhang, Jinfei,Yan, Ting,Liu, Xiaolong,Zhang, Chen,Li, Xia,Yan, Ting.

[4]Carbon and nitrogen metabolism related to grain formation in two different senescent types of maize. He, P,Zhou, W,Jin, JY. 2004

[5]Over-expression of phosphoenolpyruvate carboxylase cDNA from C4 millet (Seteria italica) increase rice photosynthesis and yield under upland condition but not in wetland fields. Ding, Zai-Song,Huang, Su-Hua,Zhou, Bao-Yuan,Sun, Xue-Fang,Zhao, Ming. 2013

[6]Changes in organic acids and acid metabolism enzymes in melon fruit during development. Tang, Mi,Bie, Zhi-long,Wu, Ming-zhu,Yi, Hong-ping,Feng, Jong-xin. 2010

[7]Improved oxidative tolerance in suspension-cultured cells of C-4-pepctransgenic rice by H2O2 and Ca2+ under PEG-6000. Qian, Baoyun,Li, Xia,Liu, Xiaolong,Wang, Man,Qian, Baoyun,Liu, Xiaolong,Qian, Baoyun,Li, Xia,Liu, Xiaolong,Wang, Man. 2015

[8]Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Shen, W. J.,Chen, G. X.,Xu, J. G.,Jiang, Y.,Liu, L.,Gao, Z. P.,Ma, J.,Lv, C. F.,Chen, X.,Chen, T. H..

[9]Improved short-term drought response of transgenic rice over-expressing maize C-4 phosphoenolpyruvate carboxylase via calcium signal cascade. Liu, Xiaolong,Li, Xia,Yan, Ting,Zhang, Jinfei,Liu, Xiaolong,Li, Xia,Yan, Ting,Dai, Chuanchao,Zhou, Jiayu.

[10]Exogenous ATP enhance signal response of suspension cells of transgenic rice (Oryza sativa L.) expressing maize C-4 -pepc encoded phosphoenolpyruvate carboxylase under PEG treatment. Huo, K.,Li, X.,He, Y. F.,Wei, X. D.,Zhao, C. F.,Wang, C. L.,Huo, K.,Lu, W..

[11]Enhanced drought tolerance in transgenic rice over-expressing of maize C-4 phosphoenolpyruvate carboxylase gene via NO and Ca2+. Qian, Baoyun,Li, Xia,Liu, Xiaolong,Chen, Pingbo,Ren, Chengang,Qian, Baoyun,Liu, Xiaolong,Dai, Chuanchao.

[12]Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Wang, Xiao,Xin, Caiyun,Cai, Jian,Zhou, Qin,Dai, Tingbo,Cao, Weixing,Jiang, Dong,Xin, Caiyun. 2016

[13]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[14]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[15]Wheat Optimized Fertilization of High Yield Field with Returning Whole Stalks into the Soil in Huang-huai-hai Plain. Sui, Xue-Yan,Wang, Meng,Wang, Yong,Guo, Hong-Hai,Li, Zhan,Zhang, Xiao-Dong. 2016

[16]Effects of Cadmium Stress on Alternative Oxidase and Photosystem II in Three Wheat Cultivars. Xu, Fei,Zhang, Zhong-Wei,Chen, Yang-Er,Wang, Xiao,Shang, Jing,Lin, Hong-Hui,Duan, Yong-Ping,Tu, Shi-Hua,Feng, Wen-Qiang. 2010

[17]Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi. 2016

[18]Assessment of Land Suitability Potentials for Selecting Winter Wheat Cultivation Areas in Beijing, China, Using RS and GIS. Wang Da-cheng,Wang Ji-hua,Wang Da-cheng,Li Cun-jun,Song Xiao-yu,Wang Ji-hua,Yang Xiao-dong,Huang Wen-jiang,Wang Jun-ying,Zhou Ji-hong. 2011

[19]Dissipation and Residues of Dichlorprop-P and Bentazone in Wheat-Field Ecosystem. Feng, Xiaoxiao,Pan, Lixiang,Zhang, Hongyan,Yu, Jianlei,Song, Guochun. 2016

[20]Competitive interaction in a jujube tree/wheat agroforestry system in northwest China's Xinjiang Province. Zhang, W.,Wang, B. J.,Gan, Y. W.,Duan, Z. P.,Hao, X. D.,Lv, X.,Li, L. H.,Xu, W. L.. 2017

作者其他论文 更多>>