Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique

文献类型: 外文期刊

第一作者: Li, Wu

作者: Li, Wu;Li, Wu;Zhao, Fu'an;Fang, Weiping;Xie, Deyi;Hou, Jianan;Yang, Xiaojie;Zhao, Yuanming;Tang, Zhongjie;Nie, Lihong;Lv, Shuping

作者机构:

关键词: Gossypium hirsutum;salt stress;iTRAQ;root;proteomics

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2015 年 6 卷

页码:

收录情况: SCI

摘要: Soil salinity is a major abiotic stress that limits plant growth and agricultural productivity. Upland cotton (Gossypium hirsutum L.) is highly tolerant to salinity; however, large-scale proteomic data of cotton in response to salt stress are still scant. Here, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic technique was employed to identify the early differentially expressed proteins (DEPs) from salt-treated cotton roots. One hundred and twenty-eight DEPs were identified, 76 of which displayed increased abundance and 52 decreased under salt stress conditions. The majority of the proteins have functions related to carbohydrate and energy metabolism, transcription, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction, in addition to stress and defense. It is worth emphasizing that some novel salt-responsive proteins were identified, which are involved in cell cytoskeleton metabolism (actin-related protein2, ARP2, and fasciclin-like arabinogalactan proteins, FLAs), membrane transport (tonoplast intrinsic proteins, TIPs, and plasma membrane intrinsic proteins, PIPs), signal transduction (leucine-rich repeat receptor-like kinase encoding genes, LRR-RLKs) and stress responses (thaumatin-like protein, TLP, universal stress protein, USP, dirigent-like protein, DIR, desiccation-related protein PCC13-62). High positive correlation between the abundance of some altered proteins (superoxide dismutase, SOD, peroxidase, POD, glutathione S-transferase, GST, monodehydroascorbate reductase, MDAR, and malate dehydrogenase, MDH) and their enzyme activity was evaluated. The results demonstrate that the iTRAQ-based proteomic technique is reliable for identifying and quantifying a large number of cotton root proteins. gRT-PCR was used to study the gene expression levels of the five above-mentioned proteins; four patterns are consistent with those of induced protein. These results showed that the proteome of cotton roots under NaCI stress is complex. The comparative protein profiles of roots under salinity vs control improves the understanding of the molecular mechanisms involved in the tolerance of plants to salt stress. This work provides a good basis for further functional elucidation of these DEPs using genetic and/or other approaches, and, consequently, candidate genes for genetic engineering to improve crop salt tolerance.

分类号:

  • 相关文献

[1]iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Zhang, Hui,Li, Xiaojuan.

[2]iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.. Xiaoyang Ge,Chaojun Zhang,Qianhua Wang,Zuoren Yang,Ye Wang,Xueyan Zhang,Zhixia Wu,Yuxia Hou,Jiahe Wu,Fuguang Li.

[3]Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Sun, Xiaochuan,Wang, Yan,Xu, Liang,Li, Chao,Zhang, Wei,Luo, Xiaobo,Jiang, Haiyan,Liu, Liwang,Sun, Xiaochuan,Sun, Xiaochuan,Wang, Yan,Xu, Liang,Luo, Xiaobo,Liu, Liwang. 2017

[4]Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L.. Yuan Qin,Yu, Shuxun,Hengling Wei,Huiru Sun,Pengbo Hao,Hantao Wang,Junji Su,Shuxun Yu.

[5]Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. Wang, Xu-Chu,Li, Qin,Xiao, Guang-Hui,Liu, Gao-Jun,Liu, Nin-Jing,Qin, Yong-Mei,Wang, Xu-Chu,Jin, Xiang.

[6]Differential regulation of proteins in rice (Oryza sativa L.) under iron deficiency. Chen, Lin,Ding, Chengqiang,Xu, Junxu,Wang, Shaohua,Ding, Yanfeng,Zhao, Xiufeng,Mohammad, Alim Abdul.

[7]Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress. Long, Ruicai,Zhang, Tiejun,Kang, Junmei,Cong, Lili,Gao, Yanli,Yang, Qingchuan,Li, Mingna,Sun, Yan,Liu, Fengqi. 2016

[8]Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Yao, Dongxia,Wang, Chunchao,Zhang, Zhenghai,Wei, Qiang,Yan, Hong,Su, Zhen,Zhang, Xueyan,Zhao, Xinhua,Liu, Chuanliang,Zhang, Chaojun,Wang, Qianhua,Li, Fuguang. 2011

[9]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[10]Identification of cold-stress responsive proteins in Anabasis aphylla seedlings via the iTRAQ proteomics technique. Wang, Tingting,Wang, Mei,Chu, Guangming,Ye, Chunxiu,Ye, Chunxiu. 2017

[11]iTRAQ-based proteomic profiling of granulosa cells from lamb and ewe after superstimulation. Lin, Jiapeng,Lin, Jiapeng,Wu, Yangsheng,Han, Bing,Chen, Ying,Wang, Liqin,Li, Xiaolin,Liu, Mingjun,Huang, Juncheng. 2017

[12]iTRAQ Protein Profiling of Adventitious Root Formation in Mulberry Hardwood Cuttings. Tang, Zhuang,Du, Wei,Du, XiaoLong,Ban, YueYuan,Cheng, JiaLing,Du, Wei,Cheng, JiaLing.

[13]Proteomic Analysis Reveals Resistance Mechanism Against Chlorpyrifos in Frankliniella occidentalis (Thysanoptera: Thripidae). Yan, Dan-Kan,Hu, Min,Tang, Yun-Xia,Fan, Jia-Qin,Yan, Dan-Kan,Hu, Min,Tang, Yun-Xia,Fan, Jia-Qin,Yan, Dan-Kan.

[14]Proteomic analysis of differentially expressed proteins in the three developmental stages of Trichinella spiralis. Liu, J. Y.,Zhang, N. Z.,Li, W. H.,Li, L.,Yan, H. B.,Qu, Z. G.,Li, T. T.,Cui, J. M.,Yang, Y.,Jia, W. Z.,Fu, B. Q.,Jia, W. Z.,Fu, B. Q..

[15]iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes. Meng, Qingguo,Hou, Libo,Zhao, Yang,Huang, Xin,Gu, Wei,Wang, Wen,Meng, Qingguo,Hou, Libo,Zhao, Yang,Huang, Xin,Gu, Wei,Wang, Wen,Huang, Yanqing,Xia, Siyao.

[16]Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation. Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Zhu, Xing-Quan,He, Shuai,Zhou, Dong-Hui,Elsheikha, Hany M.,He, Shuai,Li, Qian.

[17]Analyses of the Molecular Mechanisms Associated with Silk Production in Silkworm by iTRAQ-Based Proteomics and RNA-Sequencing-Based Transcriptomics. Wang, Shaohua,You, Zhengying,Che, Jiaqian,Zhang, Yuyu,Qian, Qiujie,Zhong, Boxiong,Feng, Mao,Komatsu, Setsuko.

[18]Comparative proteomic analysis of virulent and avirulent strains of Toxoplasma gondii reveals strain-specific patterns. Zhou, Dong-Hui,Wang, Ze-Xiang,Zhou, Chun-Xue,He, Shuai,Zhu, Xing-Quan,Elsheikha, Hany M.,Zhou, Chun-Xue,He, Shuai. 2017

[19]Proteomic Differences between Developmental Stages of Toxoplasma gondii Revealed by iTRAQ-Based Quantitative Proteomics. Wang, Ze-Xiang,Zhou, Chun-Xue,He, Shuai,Zhou, Dong-Hui,Zhu, Xing-Quan,Zhou, Chun-Xue,Zhou, Chun-Xue,Elsheikha, Hany M.,He, Shuai,Zhu, Xing-Quan. 2017

[20]Comparative Proteomic Analysis Provides insight into the Key Proteins as Possible Targets Involved in Aspirin Inhibiting Biofilm Formation of Staphylococcus xylosus. Xu, Chang-Geng,Yang, Yan-Bei,Zhou, Yong-Hui,Hao, Mei-Qi,Ren, Yong-Zhi,Wang, Xiao-Ting,Chen, Jian-Qing,Muhammad, Ishfaq,Wang, Shuai,Li, Yan-Hua,Liu, Di,Li, Xiu-Bo,Li, Yan-Hua. 2017

作者其他论文 更多>>