Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean

文献类型: 外文期刊

第一作者: Wang, JK

作者: Wang, JK;Gai, JY

作者机构:

关键词: agromyzid beanfly (Melanagromyza sojae Zehntner);graphical analysis;mixed major gene and polygene inheritance model;segregation analysis;soybean

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN: 0014-2336

年卷期: 2001 年 122 卷 1 期

页码:

收录情况: SCI

摘要: A quantitative trait could be controlled by a few major genes and many polygenes. Distinguishing the effects of major genes from polygenes and/or environments is important for understanding the expression of a major gene in relation to its genetic background, and for predicting the segregation of a cross in breeding. Our objective was to re-analyze the resistance of soybean to agromyzid beanfly by a mixed inheritance model. Number of insects in stem (NIS) was used as an indicator of resistance. The previous result from the segregation ratio of resistance and susceptibility was that resistance was controlled by one dominant gene. The major results from the mixed inheritance model were (1) the inheritance of resistance was controlled by one major gene along with minor genes; (2) Additive and dominance effects of minor genes were generally less than those of the major gene and varied among crosses, indicating different minor gene systems; (3) Heritability was higher for the major gene than for the minor genes; (4) The F-2 plants and F-2:3 lines were classified into appropriate genotypes according to their posterior probabilities and the critical value to distinguish resistant and susceptible plants was given for NIS based on the classification. These results indicated that mixed major gene and polygene genetic analysis was superior to the frequently used classical Mendelian method.

分类号:

  • 相关文献

[1]Development of transgenic rice pure lines with enhanced resistance to rice brown planthopper. Tang, KX,Hu, QN,Sun, XF,Wan, BL,Qi, HX,Lu, XG.

[2]Genetic diversity and aggressiveness of Fusarium species isolated from soybean in Alberta, Canada. Zhou, Qixing,Chang, Kan-Fa,Hwang, Sheau-Fang,Fu, Heting,Turnbull, George D.,Li, Nana,Strelkov, Stephen E.,Conner, Robert L.,McLaren, Debra L.,Harding, Michael W.. 2018

[3]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[4]Geographical distribution of GmTfl1 alleles in Chinese soybean varieties. Liu, Guifeng,Zhao, Lin,Qiu, Lijuan,Liu, Ying,Chang, Ruzhen,Guan, Rongxia,Qiu, Lijuan,Averitt, Benjamin J.,Zhang, Bo,Ma, Yansong,Luan, Xiaoyan. 2015

[5]Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. Li, Pan-Song,Chai, Shou-Cheng,Li, Pan-Song,Yu, Tai-Fei,He, Guan-Hua,Chen, Ming,Zhou, Yong-Bin,Xu, Zhao-Shi,Ma, You-Zhi. 2014

[6]Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Song, Zhang-yue,Tian, Jing-luan,Fu, Wei-zhe,Li, Lin,Lu, Ling-hong,Zhou, Lian,Shou, Hui-xia,Shan, Zhi-hui,Tang, Gui-xiang. 2013

[7]A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering. Yang DeGuang,Zhao Wang,Meng YingYing,Li HongYu,Liu Bin. 2015

[8]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[9]Purification and characterization of beta-glucosidase from newly isolated Aspergillus sp MT-0204. Qi, Bin,Liu, Xianjin,Qi, Bin,Wang, Limei. 2009

[10]The Soybean Basic Helix-Loop-Helix Transcription Factor ORG3-Like Enhances Cadmium Tolerance via Increased Iron and Reduced Cadmium Uptake and Transport from Roots to Shoots. Xu, Zhaolong,Liu, Xiaoqing,He, Xiaolan,Xu, Ling,Huang, Yihong,Shao, Hongbo,Zhang, Dayong,Shao, Hongbo,Tang, Boping,Ma, Hongxiang. 2017

[11]Aspects of soybean insect resistance breeding in China. Wang, S. 2004

[12]QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.). Liang Hui-zhen,Yu Yong-liang,Wang Shu-feng,Lian Yun,Wang Ting-feng,Wei Yan-li,Gong Peng-tao,Fang Xuan-jun,Liu Xue-yi,Zhang Meng-chen. 2010

[13]RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Yang, Xiangdong,Niu, Lu,Zhang, Wei,Yang, Jing,Xing, Guojie,He, Hongli,Guo, Dongquan,Du, Qian,Qian, Xueyan,Yao, Yao,Li, Qiyun,Dong, Yingshan. 2018

[14]Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Zhang, L.,Wang, Y. M.,Yuan, C. P.,Zhang, Y. Y.,Li, H. Y.,Dong, Y. S.,Zhao, H. K.,Yan, X. F.,Li, Q. Y.. 2015

[15]Optimal Concentration of Zinc Sulfate in Foliar Spray to Alleviate Salinity Stress in Glycine soja. Jiang, W.,Xu, H. L.,Lu, H. F.,Jiang, W.,Sun, X. H.,Mantri, N.. 2014

[16]Allelism and molecular mapping of soybean necrotic root mutants. Palmer, Reid G.,Zhang, Lei,Huang, Zhiping. 2008

[17]Detection of Hirsutella spp. and Pasteuria sp parasitizing second-stage juveniles of Heterodera glycines in soybean fields in China. Ma, R,Liu, XZ,Jian, H,Li, SD. 2005

[18]Fine mapping and identification of the soybean R-SC4 resistance candidate gene to soybean mosaic virus. Wang, Dagang,Ma, Ying,Liu, Ning,Yang, Zhonglu,Zheng, Guijie,Zhi, Haijian,Wang, Dagang. 2011

[19]Comparative transcriptome analysis of soybean response to bean pyralid larvae. Sun, Zudong,Cai, Zhaoyan,Chen, Huaizhu,Lai, Zhenguang,Yang, Shouzhen,Tang, Xiangmin. 2017

[20]Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots. Wu, Weiwei,Lin, Yan,Liu, Pandao,Chen, Qianqian,Tian, Jiang,Liang, Cuiyue,Liu, Pandao. 2018

作者其他论文 更多>>