Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Xu Fei-fei

作者: Xu Fei-fei;Huang Yan;Tong Chuan;Chen Ya-ling;Bao Jin-song;Jin Liang

作者机构:

关键词: yield;plant architecture;heading date;association mapping;marker-assisted selection

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 10 期

页码:

收录情况: SCI

摘要: High yield in rice mainly depends on large grain weight, ideal plant architecture and proper flowering time adapting to various geographic regions. To help achieve higher yield, phenotype variations of heading date (HD), plant architecture and grain shape in a panel of 416 rice accessions were investigated in this study. A total of 143 markers including 100 simple sequence repeat (SSR) markers and 43 gene-tagged markers were employed in association mapping to detect quantitative trait loci (QTL) responsible for these variations. Among the 7 subpopulations, POP5 in japonica group showed the largest values of HD and grain width (GW), but the smallest values of grain length (GL) and grain length to width ratio (GLW). Among the six indica groups, POP7 had the largest values of HD, GL, GLW, and 1 000-grain weight (TGW). A total of 27 QTLs were detected underlying these phenotypic variations in single year, while 12 of them could be detected in 2006 and 2007. GS3 marker was closely associated with GL, GW and GLW, and widely distributed in different groups. The starch synthesis related gene markers, SSI, SSIIa, SBE1, AGPL4, and ISA1, were linked to plant height (PH), panicle length (PL), flag leaf length (FLL), GW, and GLW. The SSR markers, RM267, RM340 and RM346, were linked to at least two traits. Therefore, these new markers will probably be used to improve rice grain yield or plant architecture when performing marker-assisted selection of proper alleles.

分类号:

  • 相关文献

[1]A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7. Hu, Shikai,Dong, Guojun,Xu, Jie,Su, Yan,Shi, Zhenyuan,Ye, Weijun,Li, Yuanyuan,Li, Gengmi,Zhang, Bin,Hu, Jiang,Qian, Qian,Zeng, Dali,Guo, Longbiao. 2013

[2]Genome-Wide Association Mapping Reveals the Genetic Control Underlying Branch Angle in Rapeseed (Brassica napus L.). Li, Hongge,Zhang, Liping,Hu, Jihong,Zhang, Fugui,Chen, Biyun,Xu, Kun,Gao, Guizhen,Li, Hao,Zhang, Tianyao,Wu, Xiaoming,Li, Hongge,Li, Zaiyun. 2017

[3]A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Li, Feng,Chen, Biyun,Xu, Kun,Gao, Guizhen,Yan, Guixin,Qiao, Jiangwei,Li, Jun,Li, Hao,Li, Lixia,Xiao, Xin,Zhang, Tianyao,Wu, Xiaoming,Li, Feng,Nishio, Takeshi.

[4]Improving rice yield and quality by QTL pyramiding. Wang, Peng,Xing, Yongzhong,Yu, Sibin,Wang, Peng,Yu, Sibin,Li, Zhikang,Li, Zhikang. 2012

[5]Two Novel AP2/EREBP Transcription Factor Genes TaPARG Have Pleiotropic Functions on Plant Architecture and Yield-Related Traits in Common Wheat. Li, Bo,Li, Qiaoru,Mao, Xinguo,Li, Ang,Wang, Jingyi,Chang, Xiaoping,Hao, Chenyang,Zhang, Xueyong,Jing, Ruilian. 2016

[6]A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). Li, Hui,Jiang, Ling,Wan, Jianmin,Sun, Wei,Cheng, Zhijun,Jin, Tianyun,Ma, Xiaoding,Guo, Xiuping,Wang, Jiulin,Zhang, Xin,Wu, Fuqing,Wu, Chuanyin,Wan, Jianmin,Youn, Ji-Hyun,Kim, Seong-Ki.

[7]Genetic analysis and fine mapping of a semi-dwarf gene in a centromeric region in rice (Oryza sativa L.). Chen, Mingjiang,Zhao, Zhigang,Chen, Liangming,Zhou, Feng,Zhong, Zhengzheng,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[8]Short and erect rice (ser) mutant from Khao Dawk Mali 105' improves plant architecture. Yan, Wengui,Jia, Limeng,Jackson, Aaron,Pan, Xuhao,Hu, Biaolin,Zhang, Qijun,Jia, Limeng,Jia, Limeng,Pan, Xuhao,Yan, Zongbu,Deren, Christopher,Pan, Xuhao,Huang, Bihu.

[9]Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Zhang, Fei,Jiang, Jiafu,Chen, Sumei,Chen, Fadi,Fang, Weimin,Zhang, Fei.

[10]Insertion of a solo LTR retrotransposon associates with spur mutations in 'Red Delicious' apple (Malus x domestica). Han, Mengxue,Qiu, Huarong,Guo, Jing,Mu, Wenlei,Sun, Jun,Sun, Qibao,Zhou, Junyong,Lu, Lijuan,Han, Mengxue,Mu, Wenlei.

[11]Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.). Wu, Qi,Li, Shigui,Wu, Qi,Li, Dayong,Liu, Xue,Zhao, Xianfeng,Li, Xiaobing,Zhu, Lihuang,Wu, Qi,Li, Dayong,Liu, Xue,Zhao, Xianfeng,Li, Xiaobing,Zhu, Lihuang,Li, Dejun,Liu, Xue. 2015

[12]The alteration in the architecture of a T-DNA insertion rice mutant osmtd1 is caused by up-regulation of MicroRNA156f. Peng, Keqin,Huang, Zhigang,Tong, Jianhua,Kabir, Mohammed Humayun,Xiao, Langtao,Shen, Gezhi,Wang, Jianhui,Zhang, Jingzhe,Qin, Genji. 2015

[13]Genetic analysis and fine mapping of a dominant dwarfness gene from wild rice (Oryza barthii). Zhao, Zhigang,Zhang, Chao,Liu, Xi,Lin, Yun,Liu, Linglong,Tian, Yunlu,Chen, Liangming,Liu, Shijia,Jiang, Ling,Wan, Jianmin,Zhou, Jiawu,Tao, Dayun,Wan, Jianmin. 2018

[14]Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou, Zhiqiang,Hao, Zhuanfang,Li, Mingshun,Zhang, Degui,Yong, Hongjun,Zhang, Shihuang,Weng, Jianfeng,Li, Xinhai,Zhang, Chaoshu,Zhou, Yu,Wang, Zhenhua,Zeng, Xing,Di, Hong. 2016

[15]Genetic variation and association mapping for 12 agronomic traits in indica rice. Lu, Qing,Zhang, Mengchen,Niu, Xiaojun,Wang, Shan,Xu, Qun,Feng, Yue,Wang, Caihong,Deng, Hongzhong,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Wei, Xinghua,Niu, Xiaojun. 2015

[16]LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Xiong, Guo Sheng,Hu, Xing Ming,Jiao, Yong Qing,Yu, Yan Chun,Chu, Cheng Cai,Li, Jia Yang,Qian, Qian,Wang, Yong Hong. 2006

[17]IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Song, Xiaoguang,Lu, Zefu,Yu, Hong,Shao, Gaoneng,Xiong, Jinsong,Meng, Xiangbing,Jing, Yanhui,Liu, Guifu,Xiong, Guosheng,Duan, Jingbo,Wang, Yonghong,Li, Jiayang,Song, Xiaoguang,Lu, Zefu,Yu, Hong,Shao, Gaoneng,Xiong, Jinsong,Meng, Xiangbing,Jing, Yanhui,Liu, Guifu,Xiong, Guosheng,Duan, Jingbo,Wang, Yonghong,Li, Jiayang,Shao, Gaoneng,Li, Jiayang,Yao, Xue-Feng,Liu, Chun-Ming,Li, Hongqing,Lu, Zefu,Xiong, Jinsong,Xiong, Guosheng. 2017

[18]LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Li, Peijin,Wang, Yonghong,Qian, Qian,Fu, Zhiming,Wang, Mei,Zeng, Dali,Li, Baohua,Wang, Xiujie,Li, Jiayang. 2007

[19]Identification of a novel tillering dwarf mutant and fine mapping of the TDDL(T) gene in rice (Oryza sativa L.). Gao ZhenYu,Guo LongBiao,Liu Jian,Dong GuoJun,Hu Jiang,Qian Qian,Gao ZhenYu,Liu XiaoHui,Han Bin. 2009

[20]Disruption of OsARF19 is Critical for Floral Organ Development and Plant Architecture in Rice (Oryza sativa L.). Zhang, Shengzhong,Wu, Tao,Liu, Shijia,Liu, Xi,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

作者其他论文 更多>>