Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing

文献类型: 外文期刊

第一作者: Zhang, Peng

作者: Zhang, Peng;Zhu, Yuqiang;Wang, Lili;Chen, Liping;Zhou, Shengjun

作者机构:

关键词: SLAF-seq;Super-BSA;Powdery mildew resistance;Cucumber

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2015 年 16 卷

页码:

收录情况: SCI

摘要: Background: Powdery mildew (PM) is the most common fungal disease of cucumber and other cucurbit crops, while breeding the PM-resistant materials is the effective way to defense this disease, and the recent development of modern genetics and genomics make us aware of that studying the resistance genes is the essential way to breed the PM high-resistance plant. With the ever increasing throughput of next-generation sequencing (NGS), the development of specific length amplified fragment sequencing (SLAF-seq) as a high-resolution strategy for large-scale de novo SNP discovery is gradually applied for functional gene mining. Here we combined the bulked segregant analysis (BSA) with SLAF-seq to identify candidate genes associated with PM resistance in cucumber. Methods: A segregating population comprising 251 F2 individuals was developed using H136 (female parent) as susceptible parent and BK2 (male parent) as resistance donor. After PMR test, total genomic DNA was prepared from each plant. Systemic genomic analysis of the GC content, repeat sequence, etc. was carried out by prediction software SLAF_Predict to establish condition to ensure the uniformity and density of the molecular markers. After samples were gel purified, SLAFs were generated at Biomarker Technologies Corporation in Beijing. Based on SLAF tags and the PMR test result, the hot region were annotated. Results: A total of 73,100 high-quality SLAF tags with an average depth of 99.11x were sequenced. Among these, 5,355 polymorphic tags were identified with a polymorphism rate of 7.34 %, including 7.09 % SNPs and other polymorphism types. Finally, 140 associated SLAFs were identified, and two main Hot Regions were detected on chromosome 1 and 6, which contained five genes invovled in defense response, toxin metabolism, cell stress response, and injury response in cucumber. Conclusions: Associated markers identified by super-BSA in this study, could not only speed up the study of the PMR genes, but also provide a feasible solution for breeding the marker-assisted PMR cucumber. Moreover, this study could also be extended to any other species with reference genome.

分类号:

  • 相关文献

[1]Physical mapping and candidate gene prediction of fertility restorer gene of cytoplasmic male sterility in cotton. Zhao, Cunpeng,Zhao, Guiyuan,Geng, Zhao,Wang, Zhaoxiao,Wang, Kaihui,Liu, Suen,Zhang, Hanshuang,Guo, Baosheng,Geng, Junyi. 2018

[2]QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber. Liang, Danna,Chen, Minyang,Qi, Xiaohua,Xu, Qiang,Zhou, Fucai,Chen, Xuehao,Liang, Danna. 2016

[3]Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat. Lifang Zhuang,Peng Liu,Zhenqian Liu,Tingting Chen,Nan Wu,Ling Sun,Zengjun Qi.

[4]Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Chen, XM,Luo, YH,Xia, XC,Xia, LQ,Chen, X,Ren, ZL,He, ZH,Jia, JZ. 2005

[5]Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Huang, XQ,Wang, LX,Xu, MX,Roder, MS. 2003

[6]Isolation, chromosomal location, and expression analysis of putative powdery mildew resistance genes in wheat (Triticum aestivum L.). Wan, Ping,Ling, Lijun,Cao, Shuanghe,Wang, Xianping,Zhang, Wenjun,Ling, Hongqing,Zhu, Lihuang,Zhang, Xiangqi. 2007

[7]Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye. An, Diao-Guo,Li, Li-Hui,Li, Jun-Ming,Li, Hong-Jie,Zhu, Yong-Guan. 2006

[8]Development and identification of wheat-Haynaldia villosa T6DL.6VS chromosome translocation lines conferring resistance to powdery mildew. Li, H,Chen, X,Xin, ZY,Ma, YZ,Xu, HJ,Chen, XY,Jia, X. 2005

[9]Genetic behavior of Triticum aestivum-Dasypyrum villosum translocation chromosomes T6V#4S.6DL and T6V#2S.6AL carrying powdery mildew resistance. Liu Chang,Ye Xing-guo,Wang Mei-jiao,Li Shi-jin,Lin Zhi-shan. 2017

[10]Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. Junji Su,Chaoyou Pang,Hengling Wei,Libei Li,Bing Liang,Caixiang Wang,Meizhen Song,Hantao Wang,Shuqi Zhao,Xiaoyun Jia,Guangzhi Mao,Long Huang,Dandan Geng,Chengshe Wang,Shuli Fan. 2016

[11]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[12]High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. Jiang, Biao,Liu, Wenrui,Xie, Dasen,Peng, Qingwu,He, Xiaoming,Lin, Yu'e,Liang, Zhaojun,Jiang, Biao,Liu, Wenrui,Xie, Dasen,He, Xiaoming. 2015

[13]Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing. Chen, Shen,Wang, Wen-juan,Su, Jing,Wang, Cong-ying,Feng, Ai-qing,Yang, Jian-yuan,Zeng, Lie-xian,Zhu, Xiao-yuan. 2016

[14]Cloning and Characterization of TaTGW-7A Gene Associated with Grain Weight in Wheat via SLAF-seq-BSA. Hu, Ming-Jian,Zhang, Hai-Ping,Liu, Kai,Cao, Jia-Jia,Wang, Sheng-Xing,Jiang, Hao,Wu, Zeng-Yun,Lu, Jie,Zhu, Xiao F.,Xia, Xian-Chun,Sun, Gen-Lou,Ma, Chuan-Xi,Chang, Cheng,Xia, Xian-Chun,Sun, Gen-Lou. 2016

[15]Construction of a High-Density Genetic Map Based on Large-Scale Marker Development in Mango Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). Luo, Chun,Shu, Bo,Yao, Quangsheng,Wu, Hongxia,Xu, Wentian,Wang, Songbiao. 2016

[16]High-Density Genetic Map Construction and Gene Mapping of Basal Branching Habit and Flowers per Leaf Axil in Sesame. Mei, Hongxian,Liu, Yanyang,Du, Zhenwei,Wu, Ke,Cui, Chengqi,Jiang, Xiaolin,Zhang, Haiyang,Zheng, Yongzhan. 2017

[17]Construction of a high-density SNP genetic map in fluecured tobacco based on SLAF-seq. Gong, Daping,Xu, Xiuhong,Wang, Chuanyi,Ren, Min,Wang, Chunkai,Chen, Mingli,Huang, Long,Xu, Xiuhong,Wang, Chunkai,Wang, Chunkai.

[18]Toward Identification of Black Lemma and Pericarp Gene Blp1 in Barley Combining Bulked Segregant Analysis and Specific-Locus Amplified Fragment Sequencing. Jia, Qiaojun,Liang, Zongsuo,Jia, Qiaojun,Liang, Zongsuo,Wang, Junmei,Zhu, Jinghuan,Hua, Wei,Shang, Yi,Yang, Jianming. 2017

[19]Construction of a high-density genetic linkage map in pear (Pyrus communis x Pyrus pyrifolia nakai) using SSRs and SNPs developed by SLAF-seq. Wang, Long,Wu, Jun,Yin, Hao,Zhang, Shaoling,Wang, Long,Li, Xiugen,Wang, Lei,Xue, Huabai.

[20]Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. Li, Bin,Tian, Ling,Zhang, Jingying,Han, Fenxia,Yan, Shurong,Wang, Lianzheng,Sun, Junming,Huang, Long,Zheng, Hongkun. 2014

作者其他论文 更多>>