Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers

文献类型: 外文期刊

第一作者: Wu, Zhi-Gang

作者: Wu, Zhi-Gang;Jiang, Wu;Bao, Xiao-Qing;Chen, Song-Lin;Tao, Zheng-Ming;Bao, Xiao-Qing;Chen, Song-Lin;Mantri, Nitin

作者机构:

关键词: Transcriptome;Flavonoid biosynthesis;Dioscorea alata L;Tuber color;Differentially expressed genes;Microsatellite markers

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2015 年 16 卷

页码:

收录情况: SCI

摘要: Background: Yam (Dioscorea alata L.) is an important tuber crop and purple pigmented elite cultivar has recently become popular because of associated health benefits. Identifying candidate genes responsible for flavonoid biosynthesis pathway (FBP) will facilitate understanding the molecular mechanism of controlling pigment formation in yam tubers. Here, we used Illumina sequencing to characterize the transcriptome of tubers from elite purple-flesh cultivar (DP) and conventional white-flesh cultivar (DW) of yam. In this process, we also designed high quality molecular markers to assist molecular breeding for tuber trait improvement. Results: A total of 125,123 unigenes were identified from the DP and DW cDNA libraries, of which about 49.5% (60,020 unigenes) were annotated by BLASTX analysis using the publicly available protein database. These unigenes were further annotated functionally and subject to biochemical pathway analysis. 511 genes were identified to be more than 2-fold (FDR < 0.05) differentially expressed between the two yam cultivars, of which 288 genes were up-regulated and 223 genes were down-regulated in the DP tubers. Transcriptome analysis detected 61 unigenes encoding multiple well-known enzymes in the FBP. Furthermore, the unigenes encoding chalcone isomerase (CHS), flavanone 3-hydroxylase (F3H), flavonoid 3'-monooxygenase (F3'H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), and flavonol 3-O-glucosyltransferase (UF3GT) were found to be significantly up-regulated in the DP, implying that these genes were potentially associated with tuber color formation in this elite cultivar. The expression of these genes was further confirmed by qRT-PCR. Finally, 11,793 SSRs were successfully identified with these unigenes and 6,082 SSR markers were developed using Primer 3. Conclusions: This study provides the first comprehensive transcriptomic dataset for yam tubers, which will significantly contribute to genomic research of this and other related species. Some key genes associated with purple-flesh trait were successfully identified, thus providing valuable information about molecular process of regulating pigment accumulation in elite yam tubers. In the future, this information might be directly used to genetically manipulate the conventional white-fleshed tuber cultivars to enable them to produce purple flesh. In addition, our SSR marker sets will facilitate identification of QTLs for various tuber traits in yam breeding programs.

分类号:

  • 相关文献

[1]Dissecting the Variations of Ripening Progression and Flavonoid Metabolism in Grape Berries Grown under Double Cropping System. Wang, Yu,He, Lei,Yang, Xiao-Hui,He, Fei,Duan, Chang-Qing,Wang, Jun,Chen, Wei-Kai,Wang, Yu,He, Lei,Yang, Xiao-Hui,He, Fei,Duan, Chang-Qing,Wang, Jun,Bai, Xian-Jin,Cao, Mu-Ming,Cheng, Guo,Cao, Xiong-Jun,Guo, Rong-Rong. 2017

[2]Molecular Link between Leaf Coloration and Gene Expression of Flavonoid and Carotenoid Biosynthesis in Camellia sinensis Cultivar 'Huangjinya'. Song, Lubin,Yao, Yuantao,Tao, Jihan,Ma, Qingping,Sun, Kang,Kaleri, Najeeb A.,Li, Xinghui,Zou, Zhongwei. 2017

[3]De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.). Kaijie Xu,Fengli Sun,Guaiqiang Chai,Yongfeng Wang,Lili Shi,Shudong Liu,Yajun Xi. 2015

[4]Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.). Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui,Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui. 2016

[5]De novo assembly and analysis of tissue-specific transcriptomes revealed the tissue-specific genes and profile of immunity from Strongylocentrotus intermedius. Chen, Yadong,Chang, Yaqing,Wang, Xiuli,Qiu, Xuemei,Liu, Yang,Chen, Yadong.

[6]Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq. Li Ming-na,Feng Zi-rong,Sun Yan,Zhang, Kun,Cao Shi-hao,Long Rui-cai,Kang Jun-mei,Wang Zhen,Liu Feng-qi. 2018

[7]Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.). Mei, Shiyong,Liu, Touming,Liu, Touming,Wang, Zhiwei. 2016

[8]De novo transcriptomic analysis of the female and male adults of the blood fluke Schistosoma turkestanicum. Chang, Qiao-Cheng,Wang, Chun-Ren,Liu, Guo-Hua,Xu, Min-Jun,Zhu, Xing-Quan,Xu, Min-Jun,Gao, Jun-Feng,Zhu, Xing-Quan. 2016

[9]Comparative transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile line in sesame (Sesamum indicum L.). Liu, Hongyan,Zhou, Fang,Yang, Minmin,Zhou, Ting,Zhao, Yingzhong,Tan, Mingpu,Yu, Haijuan,Li, Liang. 2016

[10]Transcriptome and Gene Expression Analysis of Cylas formicarius (Coleoptera: Brentidae) During Different Development Stages. Ma, Juan,Wang, Rongyan,Li, Xiuhua,Gao, Bo,Chen, Shulong. 2016

[11]Transcriptome profiling reveals differentially expressed genes associated with wizened flower bud formation in Chinese pear (Pyrus bretschneideri Rehd.). Liu, Ya,Zhang, Hu Ping,Gu, Chao,Tao, Shu Tian,Qi, Kai Jie,Zhang, Shao Ling,Wang, Dong Sheng,Guo, Xian Ping.

[12]Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection. Tang, Shouwei.

[13]Ovarian transcriptomic analysis of Shan Ma ducks at peak and late stages of egg production. Zhu, ZhiMing,Miao, ZhongWei,Xin, QingWu,Li, Li,Huang, QinLou,Zheng, NenZhu,Chen, HongPing,Lin, RuLong.

[14]Characterization of the Dioscorin Gene Family in Dioscorea alata Reveals a Role in Tuber Development and Environmental Response. Liu, Linya,Huang, Yacheng,Wu, Wenqiang,Xu, Yun,Cong, Ziwen,Xie, Jun,Xia, Wei,Huang, Dongyi,Liu, Linya,Huang, Yacheng,Huang, Xiaolong,Yang, Jianghua. 2017

[15]Comparative Proteomic Analysis of the Graft Unions in Hickory (Carya cathayensis) Provides Insights into Response Mechanisms to Grafting Process. Xu, Dongbin,Yuan, Huwei,Tong, Yafei,Zhao, Liang,Qiu, Lingling,Guo, Wenbin,Yan, Daoliang,Zheng, Bingsong,Xu, Dongbin,Yuan, Huwei,Tong, Yafei,Zhao, Liang,Qiu, Lingling,Guo, Wenbin,Yan, Daoliang,Zheng, Bingsong,Shen, Chenjia,Liu, Hongjia. 2017

[16]Characterization of the BrTT1 gene responsible for seed coat color formation in Dahuang (Brassica rapa L. landrace). Wang, Yanhua,Xiao, Lu,Du, Dezhi,Dun, Xiaoling,Liu, Kede. 2017

[17]A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Yuan, Yuan,Qi, Linjie,Yang, Jian,Wu, Chong,Huang, Luqi,Liu, Yunjun.

[18]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[19]Development of 15 novel dinucleotide microsatellite markers in the Senegalese sole Solea senegalensis. Chen, Song-Lin,Shao, Chang-Wei,Xu, Gen-Bo,Liao, Xiao-Lin,Tian, Yong-Sheng. 2008

[20]Analysis of microsatellite DNA polymorphisms in five China native cattle breeds and application to population genetics studies. Jin, HG,Zhao, YM,Zhou, GL. 2005

作者其他论文 更多>>