Unraveling cereal physical barriers composed of cell walls and protein matrix: Insights from structural changes and starch digestion

文献类型: 外文期刊

第一作者: Chen, Xiaoyu

作者: Chen, Xiaoyu;Zhu, Ling;Zhang, Hui;Wu, Gangcheng;Cheng, Lilin;Zhang, Yayuan

作者机构:

关键词: Cereals; Cell wall; Protein matrix; Cooking transformation; Starch digestion

期刊名称:INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES ( 影响因子:8.5; 五年影响因子:8.7 )

ISSN: 0141-8130

年卷期: 2024 年 279 卷

页码:

收录情况: SCI

摘要: Physical barriers composed of cell walls and protein matrix in cereals, as well as their cooking changes, play important roles in starch digestion. In this study, the physical barriers of native and cooked highland barley (HB), brown rice (BR), and oats (OA) kernels and their contribution to starch digestion were investigated. The resistant starch content was similar in cereal flours, but varied among cooked kernels (HB > BR > OA: 45.05 %, 10.30 %, and 24.71 %). The water adsorption, gelatinization enthalpy, and decrease in hardness of HB kernels were lower than those of OA and BR kernels. Microstructural observations of native kernels showed that HB had the thickest cell walls. After cooking, the lowest cell wall deformation and a dense continuous network developed from the protein matrix were observed in HB kernels. During digestion, undigested starch granules encapsulated by the stable cell walls and strong protein network were observed in HB kernels, but not in BR or OA kernels. Furthermore, the heavily milled HB kernels still had more resistant starch than the intact OA and BR kernels. Therefore, the physical barriers of HB kernels exhibited stronger inhibition of starch gelatinization and digestion. Differences in cereal physical barriers led to various inhibitory effects.

分类号:

  • 相关文献
作者其他论文 更多>>