Development and Validation of High-glucoraphanin Broccoli F-1 Hybrids and Parental Lines

文献类型: 外文期刊

第一作者: Gu, Honghui

作者: Gu, Honghui;Wang, Jiansheng;Yu, Huifang;Zhao, Zhenqing;Sheng, Xiaoguang;Chen, Jisuan;Xu, Yingjun

作者机构:

关键词: Brassica oleracea;breeding;glucosinolate;progoitrin

期刊名称:JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE ( 影响因子:1.144; 五年影响因子:1.617 )

ISSN: 0003-1062

年卷期: 2014 年 139 卷 4 期

页码:

收录情况: SCI

摘要: Sulforaphane is an anticarcinogenic isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate (glucoraphanin), which is abundant in broccoli (Brassica oleracea var. italica) florets. However, some breakdown products from alkenyl glucosinolates present in many broccoli cultivars, particularly oxazolidine-2-thione hydrolyzed from 2-(R)-hydroxy-3-butenyl glucosinolate (progoitrin), have potentially harmful effects on human and animal health. The main objective of this study was to improve the glucoraphanin concentration in F-1 hybrids by cross-breeding with inbred lines and doubled haploids. Glucoraphanin concentrations in 31 of the 61 F-1 hybrids were significantly higher (P=0.05) than that of the commercial cultivar (Youxiu) with the highest concentration of glucoraphanin (4.18 mu mol.g(-1) dry weight) among eight reference cultivars. Sixteen of the F-1 hybrids had glucoraphanin concentrations 3-fold higher than that of 'Youxiu'. Alkenyl glucosinolates were not detected in the new hybrids as a result of the parents having few of these compounds but were found in five reference cultivars. Most F-1 hybrids showed moderate indole glucosinolate concentrations and acceptable commercial traits. IL609 and IL702.2 were determined to be promising parental lines as a result of the high glucoraphanin concentration that they and their offspring contained. The findings also indicated that some F-1 hybrids do not show the high-glucoraphanin character of their parents; consequently, evaluation of these F-1 hybrids for their glucosinolate content is required for breeding high-glucoraphanin broccoli.

分类号:

  • 相关文献

[1]Influence of leaf-cover on visual quality and health-promoting phytochemicals in loose-curd cauliflower florets. Wang, Jiansheng,Zhao, Zhenqing,Sheng, Xiaoguang,Yu, Huifang,Gu, Honghui.

[2]Genetic variability assessed by microsatellites in the breeding populations of the shrimp Penaeus (Fenneropenaeus) chinensis in China. Zhang, Tianshi,Kong, Jie,Wang, Weiji,Wang, Qingyin,Zhang, Tianshi.

[3]Enriching Glucoraphanin in Brassica rapa Through Replacement of BrAOP2.2/BrAOP2.3 with Non-functional Genes. Liu, Zhiyuan,Liang, Jianli,Zheng, Shuning,Zhang, Jifang,Wu, Jian,Cheng, Feng,Wang, Xiaowu,Liu, Zhiyuan,Yang, Wencai. 2017

[4]The ability to manipulate plant glucosinolates and nutrients explains the better performance of Bemisia tabaci Middle East-Asia Minor 1 than Mediterranean on cabbage plants. Cui, Hongying,Guo, Litao,Wang, Shaoli,Xie, Wen,Wu, Qingjun,Zhang, Youjun,Jiao, Xiaoguo. 2017

[5]Comparative analysis of MYB28 homologs and development of a MYB28-specific marker in Brassica napus L.. Long, Yan,Zhang, Jinwen,Wang, Jiao,Pei, Xinwu,Long, Yan,Wang, Jing,Wang, Yanyan.

[6]Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation. Liu, Tongjin,Zhang, Xiaohui,Yang, Haohui,Qiu, Yang,Wang, Haiping,Shen, Di,Song, Jiangping,Li, Xixiang,Agerbirk, Niels,Agerbirk, Niels. 2016

[7]De novo Transcriptome Analysis of Sinapis alba in Revealing the Glucosinolate and Phytochelatin Pathways. Zhang, Xiaohui,Liu, Tongjin,Duan, Mengmeng,Song, Jiangping,Li, Xixiang. 2016

[8]Associative Transcriptomics Study Dissects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus. Lu, Guangyuan,Harper, Andrea L.,Bancroft, Ian,Lu, Guangyuan,Trick, Martin,Morgan, Colin,Fraser, Fiona,O'Neill, Carmel.

[9]VARIATION OF SULFORAPHANE LEVELS IN BROCCOLI (BRASSICA OLERACEA VAR. ITALICA) DURING FLOWER DEVELOPMENT AND THE ROLE OF GENE AOP2. Li, Zhansheng,Liu, Yumei,Fang, Zhiyuan,Yang, Limei,Zhuang, Mu,Zhang, Yangyong,Sun, Peitian,Zhao, Wen.

[10]Glucosinolates in Chinese Brassica campestris vegetables: Chinese cabbage, purple cai-tai, choysum, pakehoi, and turnip. Chen, Xinjuan,Zhu, Zhujun,Zhu, Zhujun,Chen, Xinjuan,Gerendas, Joska,Zimmermann, Nadine. 2008

[11]Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. Teixeira, Marcella A.,Kaloshian, Isgouhi,Wei, Lihui,Kaloshian, Isgouhi.

[12]Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. Andersson, Derek,Bejai, Sarosh,Meijer, Johan,Chakrabarty, Romit,Zhang, Jiaming,Rask, Lars.

[13]Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Wang, Jiansheng,Gu, Honghui,Yu, Huifang,Zhao, Zhenqing,Sheng, Xiaoguang,Zhang, Xiaohui.

[14]Production and characterization of interspecific somatic hybrids between Brassica oleracea var. botrytis and B. nigra and their progenies for the selection of advanced pre-breeding materials. Wang, Gui-xiang,Tang, Yu,Sheng, Xiao-guang,Hao, Wei-wei,Zhang, Li,Lu, Kun,Liu, Fan,Yan, Hong. 2011

[15]Diversity of Sicilian broccoli (Brassica oleracea var. italica) and cauliflower (Brassica oleracea var. botrytis) landraces and their distinctive bio-morphological, antioxidant, and genetic traits. Branca, Ferdinando,Chiarenza, Giuseppina Laura,Cavallaro, Chiara,Tribulato, Alessandro,Gu, Honghui,Zhao, Zhenqing. 2018

[16]Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement. Wang, Gui-xiang,Lv, Jing,Zhang, Jie,Han, Shuo,Zong, Mei,Guo, Ning,Zeng, Xing-ying,Zhang, Yue-yun,Liu, Fan,Lv, Jing,Wang, You-ping,Lv, Jing. 2016

[17]Inheritance and InDel markers closely linked to petal color gene (cpc-1) in Brassica oleracea. Han, Feng-qing,Yang, Chong,Fang, Zhi-yuan,Yang, Li-mei,Zhuang, Mu,Lv, Hong-hao,Liu, Yu-mei,Li, Zhan-sheng,Liu, Bo,Yu, Hai-long,Liu, Xiao-ping,Zhang, Yang-yong.

[18]Genetic analysis and QTL mapping of traits related to head shape in cabbage (Brassica oleracea var. capitata L.). Mang, Xiaoli,Liu, Yumei,Fang, Zhiyuan,Yang, Limei,Zhuang, Mu,Zhang, Yangyong,Li, Zhansheng,Lv, Honghao,Su, Yanbin.

[19]Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Bonnema, Guusje,Kang, Jungen,Zhang, Guoyu,Fang, Zhiyuan,Wang, Xiaowu.

[20]Identification of tapetum-specific genes by comparing global gene expression of four different male sterile lines in Brassica oleracea. Ma, Yuan,Zhu, Yingguo,Ma, Yuan,Wu, Jian,Wang, Xiaowu,Kang, Jungen.

作者其他论文 更多>>