Near Infrared Spectroscopy Combining with Chemometrics for Qualitative Identification of Cadmium-Polluted Rice

文献类型: 外文期刊

第一作者: Li Gao-Yang

作者: Li Gao-Yang;Huang Lu-Hong;Su Dong-Lin;Liu Wei;Zhu Xiang-Rong;Li Gao-Yang;Su Dong-Lin;Liu Wei;Shan Yang

作者机构:

关键词: Near infrared spectroscopy;Chemometrics;Rice;Cadmium-polluted;Qualitative identification

期刊名称:CHINESE JOURNAL OF ANALYTICAL CHEMISTRY ( 影响因子:1.134; 五年影响因子:0.909 )

ISSN: 0253-3820

年卷期: 2015 年 43 卷 4 期

页码:

收录情况: SCI

摘要: Near-infrared (NIR) diffuse reflectance spectroscopy and chemometrics method were used to discriminate cadmium. polluted rice. The samples set contained 120 spectra of qualified (n=49) and excessive (n=71) was collected and scanned. After optimization, a combination (smoothing coupled with first derivative and mean centering) was utilized as a spectral pretreatment method. Competitive adaptive reweighed sampling (CARS) was adapted to selected 45 key variables, and each band of the variables was assigned. Five modeling methods including partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), K-nearest neighbor (KNN), soft independent modeling class analog (SIMCA) and principal component analysis. discriminant analysis (PCA-DA) were used and compared. PCA-DA was finally selected as the optimal qualitative model. The accuracy rate of training set and testing set for PCA-DA method was 98.8% and 91.7%, respectively. The results showed that NIR spectroscopy could be used as a rapid, non. destructive and convenient analytical method for primary screening and detecting cadmium. polluted rice.

分类号:

  • 相关文献

[1]Identification of Camellia Oils by Near Infrared Spectroscopy Combined with Chemometrics. Zhu Xiang-Rong,Li Gao-Yang,Shan Yang,Shang Xue-Bo,Huang Lu-Hong,Shuai Ming. 2011

[2]A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharification in transgenic rice by near-infrared spectroscopy. Huang, Jiangfeng,Li, Ying,Wang, Yanting,Chen, Yuanyuan,Liu, Mingyong,Wang, Youmei,Zhang, Ran,Zhou, Shiguang,Li, Jingyang,Tu, Yuanyuan,Hao, Bo,Peng, Liangcai,Xia, Tao,Huang, Jiangfeng,Li, Ying,Wang, Yanting,Chen, Yuanyuan,Liu, Mingyong,Wang, Youmei,Zhang, Ran,Zhou, Shiguang,Li, Jingyang,Tu, Yuanyuan,Hao, Bo,Peng, Liangcai,Xia, Tao,Huang, Jiangfeng,Li, Ying,Wang, Yanting,Chen, Yuanyuan,Liu, Mingyong,Wang, Youmei,Zhang, Ran,Zhou, Shiguang,Li, Jingyang,Tu, Yuanyuan,Peng, Liangcai,Liu, Mingyong,Hao, Bo,Xia, Tao,Li, Jingyang. 2017

[3]Variation and correlation analysis of polyphenolic compounds in Malus germplasm. Wang, Dajiang,Wang, Kun,Li, Jing,Gao, Yuan,Zhao, Jirong,Liu, Lijun,Gong, Xin,Dong, Xingguang. 2018

[4]Discrimination of Panax Notoginseng from Different Regions by UV Spectra Characteristics Combined with Chemometric Method. Wang Yuan-zhong,Zhong Gui,Zhang Ji,Zhao Yan-li,Yang Tian-mei,Zhang Jin-yu,Zhong Gui. 2016

[5]Visualization of Protein in Peanut Using Hyperspectral Image with Chemometrics. Liu Hong-zhi. 2017

[6]Fourier transform mid-infrared spectroscopy and chemometrics to identify and discriminate Boletus edulis and Boletus tomentipes mushrooms. Qi, Lu-Ming,Zhang, Ji,Wang, Yuan-Zhong,Qi, Lu-Ming,Liu, Hong-Gao,Li, Tao. 2017

[7]Floral classification of honey using liquid chromatography-diode array detection-tandem mass spectrometry and chemometric analysis. Zhou, Jinhui,Li, Yi,Chen, Lanzhen,Wu, Liming,Zhao, Jing,Zhou, Jinhui,Li, Yi,Chen, Lanzhen,Wu, Liming,Zhao, Jing,Zhou, Jinhui,Li, Yi,Chen, Lanzhen,Wu, Liming,Zhao, Jing,Yao, Lihu,Yao, Lihu.

[8]Liquid Chromatography Tandem Mass Spectrometry Combined with Fourier Transform Mid-Infrared Spectroscopy and Chemometrics for Comparative Analysis of Raw and Processed Gentiana rigescens. Pan, Yu,Zhang, Ji,Zhao, Yan-Li,Zuo, Zhi-Tian,Wang, Yuan-Zhong,Li, Wan-Yi,Pan, Yu,Li, Wan-Yi,Shen, Tao.

[9]Evaluation and quantitative analysis of different growth periods of herb-arbor intercropping systems using HPLC and UV-vis methods coupled with chemometrics. Chu, Bo-wen,Zhang, Ji,Li, Zhi-min,Zhao, Yan-li,Zuo, Zhi-tian,Wang, Yuan-zhong,Li, Wan-yi,Chu, Bo-wen,Zhang, Ji,Li, Zhi-min,Zhao, Yan-li,Zuo, Zhi-tian,Wang, Yuan-zhong,Li, Wan-yi,Li, Wan-yi.

[10]Discrimination of Adulterated Sesame Oil Using Mid-infrared Spectroscopy and Chemometrics. Zhao, Xiande,Dong, Daming,Zheng, Wengang,Jiao, Leizi,Lang, Yun.

[11]Characterization of Chinese Unifloral Honeys Based on Proline and Phenolic Content as Markers of Botanical Origin, Using Multivariate Analysis. Wen, Ya-Qin,Zhang, Jinzhen,Li, Yi,Chen, Lanzhen,Zhao, Wen,Zhou, Jinhui,Jin, Yue,Wen, Ya-Qin,Zhang, Jinzhen,Li, Yi,Chen, Lanzhen,Zhao, Wen,Zhou, Jinhui,Jin, Yue,Wen, Ya-Qin,Zhang, Jinzhen,Li, Yi,Chen, Lanzhen,Zhao, Wen,Zhou, Jinhui,Jin, Yue,Zhang, Jinzhen,Li, Yi,Chen, Lanzhen,Zhao, Wen,Zhou, Jinhui,Jin, Yue.

[12]Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Dong, Wenjiang,Zhao, Jianping,Hu, Rongsuo,Dong, Yunping,Tan, Lehe,Dong, Wenjiang,Zhao, Jianping,Hu, Rongsuo,Tan, Lehe,Dong, Wenjiang,Zhao, Jianping,Dong, Yunping,Tan, Lehe.

[13]Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. Shan, Yang,Li, Gaoyang,Su, Donglin,Liu, Feng,Li, Shuifang,Zhang, Zhuoyong.

[14]Research Process on Hyperspectral Imaging Detection Technology for the Quality and Safety of Grain and Oils. Yu Hong-wei,Wang Qiang,Liu Li,Shi Ai-min,Hu Hui,Liu Hong-zhi. 2016

[15]Targeted multivariate adulteration detection based on fatty acid profiles and Monte Carlo one-class partial least squares. Zhang, Liangxiao,Yuan, Zhe,Li, Peiwu,Wang, Xuefang,Mao, Jin,Zhang, Qi,Zhang, Liangxiao,Yuan, Zhe,Li, Peiwu,Zhang, Qi,Zhang, Liangxiao,Li, Peiwu,Mao, Jin,Li, Peiwu,Wang, Xuefang,Mao, Jin,Zhang, Qi,Zhang, Liangxiao,Hu, Chundi.

[16]Characterization of volatile components in four vegetable oils by headspace two-dimensional comprehensive chromatography time-of-flight mass spectrometry. Hu, Wei,Zhang, Liangxiao,Li, Peiwu,Wang, Xiupin,Zhang, Qi,Xu, Baocheng,Sun, Xiaoman,Ma, Fei,Ding, Xiaoxia,Hu, Wei,Zhang, Qi,Li, Peiwu,Zhang, Qi,Ma, Fei,Zhang, Liangxiao,Li, Peiwu,Ding, Xiaoxia,Zhang, Liangxiao,Li, Peiwu,Wang, Xiupin,Xu, Baocheng,Sun, Xiaoman,Ma, Fei.

[17]Classification and Adulteration Detection of Vegetable Oils Based on Fatty Acid Profiles. Zhang, Liangxiao,Li, Peiwu,Sun, Xiaoman,Wang, Xuefang,Xu, Baocheng,Wang, Xiupin,Ma, Fei,Zhang, Qi,Ding, Xiaoxia,Ma, Fei,Zhang, Qi,Li, Peiwu,Zhang, Qi,Zhang, Liangxiao,Li, Peiwu,Ding, Xiaoxia,Zhang, Liangxiao,Li, Peiwu,Sun, Xiaoman,Wang, Xuefang,Xu, Baocheng,Wang, Xiupin,Ma, Fei.

[18]Identification of monofloral honeys using HPLC-ECD and chemometrics. Zhao, Jing,Du, Xiaojing,Cheng, Ni,Cao, Wei,Cheng, Ni,Wu, Liming,Cao, Wei,Chen, Lanzhen,Xue, Xiaofeng,Zhao, Jing,Wu, Liming,Xue, Xiaofeng,Zhao, Jing.

[19]Fatty acid profiles based adulteration detection for flaxseed oil by gas chromatography mass spectrometry. Sun, Xiaoman,Zhang, Liangxiao,Li, Peiwu,Xu, Baocheng,Ma, Fei,Zhang, Qi,Zhang, Wen,Zhang, Qi,Zhang, Wen,Li, Peiwu,Zhang, Qi,Zhang, Liangxiao,Li, Peiwu,Sun, Xiaoman,Zhang, Liangxiao,Li, Peiwu,Xu, Baocheng,Ma, Fei,Zhang, Wen.

[20]Non-destructive detection of dicyandiamide in infant formula powder using multi-spectral imaging coupled with chemometrics. Liu, Changhong,Zheng, Lei,Liu, Wei,Yang, Jianbo,Chen, Ying.

作者其他论文 更多>>