Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China

文献类型: 外文期刊

第一作者: Wu, Xinliang

作者: Wu, Xinliang;Wei, Yujie;Wang, Junguang;Xia, Jinwen;Cai, Chongfa;Wei, Zhiyuan;Wei, Zhiyuan

作者机构:

关键词: Sheet erosion;Field plot;Erosion model;Sediment selectivity;Climate change

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN: 0048-9697

年卷期: 2018 年 621 卷

页码:

收录情况: SCI

摘要: Soil erosion poses a major threat to the sustainability of natural ecosystems. The main objective of this study was to investigate the effects of soil type and rainfall intensity on sheet erosion processes (hydrological, erosional processes and sediment characteristics) from temperate to tropical climate. Field plot experiments were conducted under pre-wetted bare fallow condition for five soil types (two Luvisols, an Alisol, an Acrisol and a Ferralsol) with heavy textures (silty clay loam, silty clay and clay) derived separately from loess deposits, quaternary red clays and basalt in central-south China. Rainfall simulations were performed at two rainfall intensities (45 and 90 mm h(-1)) and lasted one hour after runoff generation. Runoff coefficient, sediment concentration, sediment yield rate and sediment effective size distribution were determined at 3-min intervals. Runoff temporal variations were similar at the high rainfall intensity, but exhibited a remarkable difference at the low rainfall intensity among soil types except for tropical Ferralsol. Illite was positively correlated with runoff coefficient (p < 0.05). Rainfall intensity significantly contributed to the erosional process (p < 0.001). Sediment concentration and yield rate were the smallest for the tropical Ferralsol and sediment concentration was the largest for the temperate Luvisol. The regimes (transport and detachment) limiting erosion varied under the interaction of rainfall characteristics (intensity and duration) and soil types, with amorphous iron oxides and bulk density jointly enhancing soil resistance to erosive forces (Adj-R-2 > 88%, p < 0.001). Sediment size was dominated by < 0.1 mm size fraction for the Luvisols and bimodally distributed with the peaks at < 0.1 mm and 1-0.5 mm size for the other soil

分类号:

  • 相关文献

[1]Effects of erosion degree and rainfall intensity on erosion processes for Ultisols derived from quaternary red clay. Wu, Xinliang,Wei, Yujie,Wang, Junguang,Xia, Jinwen,Cai, Chongfa,Wei, Zhiyuan,Wu, Lanlan,Fu, Zhiyong,Wei, Zhiyuan.

[2]Comparison of greenhouse gas emissions of chemical fertilizer types in China. Zhan-biao Wang,Jing Chen,Shu-chun Mao,Ying-chun Han,Fu Chen,Li-feng Zhang,Ya-bing Li,Cun-dong Li.

[3]Food Security, Food Prices and Climate Change in China: a Dynamic Panel Data Analysis. Wang, Jintian. 2010

[4]Climate change and glacier area variations in China during the past half century. Tian Hong-zhen,He Ying-bin,Tian Hong-zhen,Yang Tai-bao,Lv Hui,Li Cheng-xiu,Li Cheng-xiu,He Ying-bin. 2016

[5]NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau. Bao, Gang,Zhou, Yi,Bao, Gang,Bao, Yuhai,Qin, Zhihao,Li, Wenjuan,Sanjjav, Amarjargal. 2014

[6]Evaluation of changes in ecological security in China's Qinghai Lake Basin from 2000 to 2013 and the relationship to land use and climate change. Wang, Hong,Li, Xiaobing,Yu, Feng,Long, Huiling. 2014

[7]Sustainable bioenergy production with little carbon debt in the Loess Plateau of China. Liu, Wei,Sang, Tao,Peng, Cheng,Chen, Zhifen,Liu, Yue,Yan, Juan,Li, Jianqiang,Sang, Tao,Sang, Tao. 2016

[8]Progressive and active adaptations of cropping system to climate change in Northeast China. Chen, Changqing,Qian, Chunrong,Zhang, Weijian,Deng, Aixing,Zhang, Weijian. 2012

[9]Effects of climate change and cultivar on summer maize phenology. Chen, F.,Wang, Zh.,Chen, J.,Li, Y.,Wang, Zh.,Li, C.,Zhang, L.. 2016

[10]Simulating the Impacts of Global Warming on Wheat in China Using a Large Area Crop Model. Li Sanai,Li Sanai,Wheeler, Tim,Challinor, Andrew,Lin Erda,Xu Yinlong,Ju Hui. 2010

[11]Spatiotemporal variation of drought characteristics in the Huang-Huai-Hai Plain, China under the climate change scenario. Li Xiang-xiang,Ju Hui,Yan Chang-rong,Liu Qin,Li Xiang-xiang,Garre, Sarah,Liu Qin,Batchelor, William D.. 2017

[12]Application of GIS technology to build climatic scene in 2036 and 2056 in China. Xu, B,Chen, ZX,Qin, ZH,Liu, J,Yang, XC,Xin, XP. 2005

[13]Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms. Ouyang, Fang,Zhang, Yong-Sheng,Hui, Cang,Ge, Saiying,Men, Xin-Yuan,Zhao, Zi-Hua,Shi, Pei-Jian,Zhang, Yong-Sheng,Li, Bai-Lian. 2014

[14]The Current and Future Potential Geographical Distribution of the Solanum Fruit Fly, Bactrocera latifrons (Diptera: Tephritidae) in China. Li, Zhihong,Ni, Wenlong,Qu, Weiwei,Wu, Jiajiao,Hu, Xuenan,Wan, Fanghao. 2012

[15]Effects of elevated CO2 on the interspecific competition between two sympatric species of Aphis gossypii and Bemisia tabaci fed on transgenic Bt cotton. Li, Zhi-Yi,Chen, Fa-Jun,Liu, Tong-Jin,Xiao, Neng-Wen,Li, Jun-Sheng. 2011

[16]Projecting regional climate and cropland changes using a linked biogeophysical-socioeconomic modeling framework: 1. Model description and an equilibrium application over West Africa. Wang, Guiling,Ahmed, Kazi Farzan,Yu, Miao,Ji, Zhenming,You, Liangzhi,You, Liangzhi,Yu, Miao,Pal, Jeremy,Ji, Zhenming. 2017

[17]Daily temperature extremes play an important role in predicting thermal effects. Ma, Chun-Sen,Hoffmann, Ary A.,Hoffmann, Ary A..

[18]Response of soil enzyme activity to warming and nitrogen addition in a meadow steppe. Gong, Shiwei,Zhang, Tao,Cao, Hongbin,Shi, Lianxuan,Guo, Jixun,Sun, Wei,Guo, Rui.

[19]No changes in contributions of echinoderms to the carbon budgets in shelf seas of China over the past five decades. Jin, Shaofei,Xiong, Zhe,Jin, Shaofei,Yan, Xiaodong,Zhang, Heng,Xiao, Ning,Zhang, Junlong,Liu, Wenliang.

[20]Warming Accelerates Carbohydrate Consumption in the Diapausing Overwintering Peach Fruit Moth Carposina sasakii (Lepidoptera: Carposinidae). Zhao, Fei,Ma, Gang,Ding, Hui-Mei,Ma, Chun-Sen,Zhao, Fei,Hoffmann, Ary.

作者其他论文 更多>>