Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree)

文献类型: 外文期刊

第一作者: Nie, Zhiyi

作者: Nie, Zhiyi;Wang, Yihang;Wu, Chuntai;Li, Yu;Kang, Guijuan;Qin, Huaide;Zeng, Rizhong;Nie, Zhiyi;Wang, Yihang;Wu, Chuntai;Li, Yu;Kang, Guijuan;Qin, Huaide;Zeng, Rizhong;Wang, Yihang

作者机构:

关键词: Hevea brasiliensis;Acyl-CoA-binding protein (ACBP);Laticifer;Latex production;Rubber biosynthesis

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2018 年 19 卷

页码:

收录情况: SCI

摘要: Background: Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and their various functions have been characterized in model plants, such as Arabidopsis thaliana (A. thaliana), Oryza sativa (rice), and other plant species. In the present study, genome-wide mining and expression analysis of ACBP genes was performed on Hevea brasiliensis (the para rubber tree), the most important latex-producing crop in the world. Results: Six members of the H. brasiliensis ACBP family genes, designated HbACBP1-HbACBP6, were identified from the H. brasiliensis genome. They can be categorized into four classes with different amino acid sequences and domain structures based on the categorization of their A. thaliana counterparts. Phylogenetic analysis shows that the HbACBPs were clustered with those of other closely related species, such as Manihot esculenta, Ricinus communis, and Jatropha carcas, but were further from those of A. thaliana, a distantly related species. Expression analysis demonstrated that the HbACBP1 and HbACBP2 genes are more prominently expressed in H. brasiliensis latex, and their expression can be significantly enhanced by bark tapping (a mechanical wound) and jasmonic acid stimulation, whereas HbACBP3 HbACBP6 had almost the same expression patterns with relatively high levels in mature leaves and male flowers, but a markedly low abundance in the latex. HbACBP1 and HbACBP2 may have crucial roles in lipid and latex metabolism in laticifers, so their subcellular location was further investigated and the results indicated that HbACBP1 is a cytosol protein, whereas HbACBP2 is an endoplasmic reticulum-associated ACBP. Conclusions: In this study, the H. brasiliensis ACBP family genes were identified. Phylogenetic analyses of the HbABCPs indicate that there is a high conservation and evolutionary relationship between ACBPs in land plants. The HbACBPs are organ/tissue-specifically expressed and have different expression patterns in response to stimulation by bark tapping or ethrel/jasmonic acid. HbACBP1 and HbACBP2 are two important latex ACBPs that might be involved in the lipid and latex metabolism. The results may provide valuable information for further investigations into the biological functions of HbACBPs during latex metabolism and stress responses in H. brasiliensis.

分类号:

  • 相关文献

[1]The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Huang, Debao,Yang, Jianghua,Liu, Shujin,Li, Heping,Qin, Yunxia,Tang, Chaorong,Huang, Debao,Yang, Jianghua,Liu, Shujin,Li, Heping,Qin, Yunxia,Huang, Debao,Liu, Shujin,Li, Heping,Sakr, Soulaiman,Zhou, Yihua. 2010

[2]MYC genes with differential responses to tapping, mechanical wounding, ethrel and methyl jasmonate in laticifers of rubber tree (Hevea brasiliensis Muell. Arg.). Zhao, Yue,Zhou, Li-Min,Chen, Yue-Yi,Yang, Shu-Guang,Tian, Wei-Min,Zhao, Yue. 2011

[3]Transcriptome-Wide Identification and Characterization of MYB Transcription Factor Genes in the Laticifer Cells of Hevea brasiliensis. Wang, Ying,Zhan, Di-Feng,Li, Hui-Liang,Guo, Dong,Zhu, Jia-Hong,Peng, Shi-Qing,Zhan, Di-Feng. 2017

[4]Three MADS-box genes of Hevea brasiliensis expressed during somatic embryogenesis and in the laticifer cells. Li, Hui-Liang,Wang, Ying,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min. 2011

[5]Molecular characterization of HbEREBP2, a jasmonate-responsive transcription factor from Hevea brasiliensis Muell. Arg.. Chen, Yue-Yi,Wang, Li-Feng,Yang, Shu-Guang,Tian, Wei-Min,Chen, Yue-Yi. 2011

[6]Histochemical and immunohistochemical identification of laticifer cells in callus cultures derived from anthers of Hevea brasiliensis. Tan, Deguan,Sun, Xuepiao,Zhang, Jiaming. 2011

[7]Next-generation sequencing, assembly, and comparative analyses of the latex transcriptomes from two elite Hevea brasiliensis varieties. Li, Dejun,Liu, Hui,Zhao, Manman,Deng, Zhi,Li, Yu,Zeng, Rizhong,Tian, Weimin,Hao, Lili,Zhao, Manman. 2015

[8]cDNA Cloning and Expression Analysis of Three Components of SCFCOI1 Complex in Hevea brasiliensis. Ma, Ru-Feng,Wang, Li-Feng,Tian, Wei-Min,Peng, Shi-Qing. 2012

[9]Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg.. Chen, Yue-Yi,Wang, Li-Feng,Dai, Long-Jun,Yang, Shu-Guang,Tian, Wei-Min,Chen, Yue-Yi.

[10]Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue. Zou, Zhi,Gong, Jun,An, Feng,Xie, Guishui,Wang, Jikun,Mo, Yeyong,Yang, Lifu. 2015

[11]The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. Xiao, Xiao-Hu,Sui, Jin-Lei,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Yang, Meng,Hu, Song-Nian,Sui, Jin-Lei. 2017

[12]Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). Li, Dejun,Deng, Zhi,Liu, Xianghong,Qin, Bi,Liu, Xianghong. 2013

[13]Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis. Cheng, Han,Chen, Xiang,Zhu, Jianshun,Huang, Huasun. 2016

[14]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

[15]Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. Tong, Zheng,Wang, Dan,Sun, Yong,Yang, Qian,Meng, Xueru,Wang, Limin,Wang, Xuchu,Feng, Weiqiang,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Li, Ling. 2017

[16]Characterization of HbWRKY1, a WRKY transcription factor from Hevea brasiliensis that negatively regulates HbSRPP. Wang, Ying,Guo, Dong,Li, Hui-Liang,Peng, Shi-Qing,Wang, Ying,Peng, Shi-Qing. 2013

[17]Laticifer differentiation in Hevea brasiliensis: Induction by exogenous jasmonic acid and linolenic acid. Hao, BZ,Wu, JL. 2000

[18]Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. Liu, Jin-Ping,Zhuang, Yu-Fen,Guo, Xiu-Li,Li, Yi-Jian. 2016

[19]Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis. Liu, Hui,Deng, Zhi,Li, Dejun,Chen, Jiangshu,Wang, Sen,Hao, Lili.

[20]Differential gene expression profiles in latex from Hevea brasiliensis between self-rooting juvenile and donor clones. Li, Hui-Liang,Guo, Dong,Peng, Shi-Qing.

作者其他论文 更多>>