Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis)

文献类型: 外文期刊

第一作者: Bi, Zhenghong

作者: Bi, Zhenghong;Bi, Zhenghong;Huang, Huasun;Hua, Yuwei;Li, Xiang

作者机构:

关键词: Arabidopsis;Germination;Rubber tree;MFT homolog;Phosphatidyl ethanolamine-binding protein (PEBP) family;Flowering

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2016 年 17 卷 3 期

页码:

收录情况: SCI

摘要: A homolog of MOTHER OF FT AND TFL1 (MFT) was isolated from Hevea brasiliensis and its biological function was investigated. Protein multiple sequence alignment and phylogenetic analysis revealed that HbMFT1 conserved critical amino acid residues to distinguish MFT, FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1)-like proteins and showed a closer genetic relationship to the MFT-like group. The accumulation of HbMFT1 was generally detected in various tissues except pericarps, with the highest expression in embryos and relatively higher expression in roots and stems of seedlings, flowering inflorescences, and male and female flowers. HbMFT1 putative promoter analysis showed that tissue-specific, environmental change responsive and hormone-signaling responsive elements were generally present. HbMFT1 was strongly induced under a short-day condition at 28 degrees C, with the highest expression after the onset of a day. Overexpression of HbMFT1 inhibited seed germination, seedling growth, and flowering in transgenic Arabidopsis. The qRT-PCR further confirmed that APETALA1 (AP1) and FRUITFULL (FUL) were drastically down-regulated in 35S::HbMFT1 plants. A histochemical beta-glucuronidase (GUS) assay showed that HbMFT1::GUS activity was mainly detected in stamens and mature seeds coinciding with its original expression and notably induced in rosette leaves and seedlings of transgenic Arabidopsis by exogenous abscisic acid (ABA) due to the presence of ABA cis-elements in HbMFT1 promoter. These results suggested that HbMFT1 was mainly involved in maintenance of seed maturation and stamen development, but negatively controlled germination, growth and development of seedlings and flowering. In addition, the HbMFT1 promoter can be utilized in controlling transgene expression in stamens and seeds of rubber tree or other plant species.

分类号:

  • 相关文献

[1]Gain-of-function in Arabidopsis (GAINA) for identifying functional genes in Hevea brasiliensis. Cheng, Han,Gao, Jing,Cai, Haibin,Zhu, Jianshun,Huang, Huasun,Cheng, Han,Huang, Huasun. 2016

[2]ZmSOC1, an MADS-Box Transcription Factor from Zea mays, Promotes Flowering in Arabidopsis. Zhao, Suzhou,Luo, Yanzhong,Xu, Miaoyun,Zhang, Lan,Fan, Yunliu,Wang, Lei,Zhao, Suzhou,Wang, Lei,Zhang, Zhanlu,Wang, Weibu,Zhao, Yangmin. 2014

[3]ZmGRF, a GA regulatory factor from maize, promotes flowering and plant growth in Arabidopsis. Xu, Miaoyun,Yang, Hongmei,Hu, Zhiqiu,Hu, Xiaolong,Luan, Mingda,Zhang, Lan,Fan, Yunliu,Wang, Lei,Lu, Yunming,He, Jingcheng,Yang, Hongmei,Hu, Zhiqiu,Hu, Xiaolong,Luan, Mingda.

[4]Cloning and characterization of a novel GIGANTEA gene in sweet potato. Tang, Wei,Yan, Hui,Su, Zai-xing,Park, Sung-Chul,Liu, Ya-ju,Zhang, Yun-gang,Wang, Xin,Kou, Meng,Ma, Dai-fu,Li, Qiang,Park, Sung-Chul,Kwak, Sang-Soo. 2017

[5]The Voltage-Dependent Anion Channel 1 (AtVDAC1) Negatively Regulates Plant Cold Responses during Germination and Seedling Development in Arabidopsis and Interacts with Calcium Sensor CBL1. Li, Zhi-Yong,He, Guang-Yuan,Yang, Guang-Xiao,Li, Zhi-Yong,Xu, Zhao-Shi,Chen, Ming,Li, Lian-Cheng,Ma, Youzhi. 2013

[6]Allelopathic effects of Hemistepta lyrata on the germination and growth of wheat, sorghum, cucumber, rape, and radish seeds. Gao, Xingxiang,Li, Mei,Gao, Zongjun,Li, Changsong,Sun, Zuowen.

[7]De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). Li, Dejun,Deng, Zhi,Qin, Bi,Liu, Xianghong,Men, Zhonghua. 2012

[8]Rubber Trees Demonstrate a Clear Retranslocation Under Seasonal Drought and Cold Stresses. Li, Yuwu,Li, Yuwu,Lan, Guoyu,Xia, Yujie. 2016

[9]Design of natural rubber precision ditch fertilization machine. Wang, Yeqin,Deng, Yiguo,Zhang, Yuan,Wei, Lijiao. 2017

[10]Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. Liu, Jin-Ping,Zhuang, Yu-Fen,Guo, Xiu-Li,Li, Yi-Jian. 2016

[11]Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. Gebelin, Virginie,Argout, Xavier,Engchuan, Worrawat,Pitollat, Bertrand,Duan, Cuifang,Montoro, Pascal,Leclercq, Julie,Engchuan, Worrawat,Duan, Cuifang. 2012

[12]Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis Muell.) to discover putative genes associated with tapping panel dryness (TPD). Liu, Jin-Ping,Tian, Xiao-Yan,Xia, Zhi-Qiang,Li, Yi-Jian. 2015

[13]Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg.. Chen, Yue-Yi,Wang, Li-Feng,Dai, Long-Jun,Yang, Shu-Guang,Tian, Wei-Min,Chen, Yue-Yi.

[14]The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness. Gebelin, Virginie,Leclercq, Julie,Argout, Xavier,Sarah, Gautier,Montoro, Pascal,Kuswanhadi,Chaidamsari, Tetty,Hu, Songnian,Yang, Meng,Tang, Chaorong. 2013

[15]Ultrasound-assisted tapping of latex from Para rubber tree Hevea brasiliensis. She, Fenghua,Wang, Jin,An, Feng,Lin, Weifu,Zhu, Deming,She, Fenghua,Kong, Lingxue,An, Feng. 2013

[16]Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis. Zhu, Jinheng,Qi, Jiyan,Fang, Yongjun,Xiao, Xiaohu,Lan, Jixian,Tang, Chaorong,Zhu, Jinheng,Lan, Jixian,Tang, Chaorong,Li, Jiuhui. 2018

[17]Next-generation sequencing, assembly, and comparative analyses of the latex transcriptomes from two elite Hevea brasiliensis varieties. Li, Dejun,Liu, Hui,Zhao, Manman,Deng, Zhi,Li, Yu,Zeng, Rizhong,Tian, Weimin,Hao, Lili,Zhao, Manman. 2015

[18]Proteome analysis of interaction between rootstocks and scions in Hevea brasiliensis. Yuan, Kun,Yang, Li-Fu,Wang, Zhen-Hui,Lin, Wei-Fu,Cao, Jian-Hua,Yuan, Kun,Yang, Li-Fu,Wang, Zhen-Hui,Lin, Wei-Fu,Cao, Jian-Hua,Ding, Xuan. 2011

[19]Regulation of MIR Genes in Response to Abiotic Stress in Hevea brasiliensis. Gebelin, Virginie,Leclercq, Julie,Montoro, Pascal,Hu, Songnian,Tang, Chaorong. 2013

[20]Molecular cloning and characterization of S-adenosylmethionine decarboxylase gene in rubber tree (Hevea brasiliensis). Zhao, Manman,Liu, Hui,Deng, Zhi,Chen, Jiangshu,Yang, Hong,Li, Dejun,Zhao, Manman,Li, Huiping,Xia, Zhihui.

作者其他论文 更多>>