Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses

文献类型: 外文期刊

第一作者: Yu, Y.

作者: Yu, Y.;Cui, Y. C.;Ren, C.;Rocha, P. S. C. F.;Wang, M. L.;Xia, X. J.;Yu, Y.;Ren, C.;Peng, M.;Xu, G. Y.

作者机构:

关键词: Drought;Salt;Cassava;MePMP3-2;Rice

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2016 年 15 卷 1 期

页码:

收录情况: SCI

摘要: Plasma membrane proteolipid 3 (PMP3) is a class of small hydrophobic proteins found in many organisms including higher plants. Some plant PMP3 genes have been shown to respond to abiotic stresses and to participate in the processes of plant stress tolerance. In this study, we isolated the cassava (Manihot esculenta Crantz) MePMP3-2 gene and functionally characterized its role in tolerance to abiotic stress by expressing it in rice (Oryza sativa L.). MePMP3-2 encodes a 77-amino acid protein belonging to a subgroup of plant PMP3s that have long hydrophylic C-terminal tails of unknown function. In silico analysis and co-localization studies indicated that MePMP3-2 is a plasma membrane protein with two transmembrane domains, similar to other PMP3s. In cassava leaves, MePMP3-2 expression was up-regulated by salt and drought stresses. Heterologous constitutive expression of MePMP3-2 in rice did not alter plant growth and development but increased tolerance to salt and drought stresses. In addition, under stress conditions MePMP3-2 transgenic plants accumulated less malondialdehyde, had increased levels of proline, and exhibited greater up-regulation of the stress-related genes OsProT and OsP5CS, but led to only minor changes in OsDREB2A and OsLEA3 expression. These findings indicate that MePMP3-2 may play an important role in salt and drought stress tolerance in transgenic rice.

分类号:

  • 相关文献

[1]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[2]SlHDA5, a Tomato Histone Deacetylase Gene, Is Involved in Responding to Salt, Drought, and ABA. Yu, Xiaohui,Gao, Qiong,Chen, Guoping,Guo, Jun-E,Guo, Xuhu,Tang, Boyan,Hu, Zongli,Gao, Qiong. 2018

[3]Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Jin, Xiaofeng,Xue, Yong,Xu, RanRan,Bian, Lin,Zhu, Bo,Han, Hongjuan,Peng, Rihe,Yao, Quanhong,Wang, Ren.

[4]Differential responses of lipid peroxidation and antioxidants in Alternanthera philoxeroides and Oryza sativa subjected to drought stress. Gao, Jianming,Xiao, Qiang,Ding, Liping,Chen, Mingjie,Yin, Liang,Li, Jinzhi,Zhou, Shiyi,He, Guangyuan,Gao, Jianming.

[5]Cloning and characterization of dehydrin gene from Ammopiptanthus mongolicus. Sun, Jie,Nie, Lizhen,Sun, Guoqin,Guo, Jiufeng,Liu, Yongzhi.

[6]The Discrepant and Similar Responses of Genome-Wide Transcriptional Profiles between Drought and Cold Stresses in Cassava. Zeng, Changying,Ding, Zehong,Zhou, Fang,Zhou, Yufei,Yang, Ruiju,Yang, Zi,Wang, Wenquan,Peng, Ming. 2017

[7]Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Ma, XJ,Qian, Q,Zhu, DH.

[8]Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L.. Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-Lin,Peng, Ri-He,Xiong, Ai-Sheng,Chen, Jian-Min,Xu, Fang,Zhu, Hong,Yao, Quan-Hong.

[9]Salicylic Acid and Abiotic Stress Responses in Rice. Pal, M.,Kovacs, V.,Szalai, G.,Soos, V.,Janda, T.,Ma, X.,Liu, H.,Mei, H.. 2014

[10]Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. Ye ShuiFeng,Yu ShunWu,Shu LieBo,Wu JinHong,Luo LiJun,Ye ShuiFeng,Wu AiZhong,Wu AiZhong. 2012

[11]Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Ji, Kuixian,Wang, Yangyang,Shen, Shihua,Chen, Hui,Sun, Weining,Lou, Qiaojun,Mei, Hanwei,Ji, Kuixian,Wang, Yangyang. 2012

[12]Improvement of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries. Lafitte, HR,Li, ZK,Vijayakumar, CHM,Gao, YM,Shi, Y,Xu, JL,Fu, BY,Ali, AJ,Domingo, J,Maghirang, R,Torres, R,Mackill, D. 2006

[13]Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Zhang, Haiwen,Liu, Wu,Wan, Liyun,Li, Fang,Zhang, Zhijin,Huang, Rongfeng,Liu, Wu,Li, Fang,Dai, Liangying,Li, Dingjun,Zhang, Haiwen,Zhang, Zhijin,Huang, Rongfeng,Zhang, Haiwen,Zhang, Zhijin,Huang, Rongfeng. 2010

[14]Leucine-Rich Repeat Receptor-Like Kinase FON1 Regulates Drought Stress and Seed Germination by Activating the Expression of ABA-Responsive Genes in Rice. Feng, Lei,Gao, Zhenrui,Xiao, Guiqing,Huang, Rongfeng,Zhang, Haiwen,Huang, Rongfeng,Zhang, Haiwen.

[15]Recurrent selection breeding by dominant male sterility for multiple abiotic stresses tolerant rice cultivars. Pang, Yunlong,Wang, Xiaoqian,Xu, Jianlong,Li, Zhikang,Pang, Yunlong,Wang, Xiaoqian,Ali, Jauhar,Pang, Yunlong,Chen, Kai,Xu, Jianlong,Xu, Jianlong,Li, Zhikang.

[16]Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Yu, Linhui,Chen, Xi,Wang, Zhen,Xiang, Chengbin,Wang, Shimei,Zhu, Qisheng,Wang, Yuping,Li, Shigui,Wang, Shimei,Zhu, Qisheng.

[17]Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Zeng Liu,Li Jing-jing,Lu Guang-yuan,Fu Gui-ping,Zhang Xue-kun,Zou Xi-ling,Cheng Yong,Cai Jun-song,Li Jing-jing,Li Chun-sheng,Ma Hai-qing,Liu Qing-yun. 2018

[18]iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Zhang, Hui,Li, Xiaojuan.

[19]Cloning and expression analysis of a vacuolar Na+/H+ antiporter gene from Alfalfa. Yang, QC,Wu, MS,Wang, PQ,Kang, JM,Zhou, XL.

[20]Different actions of salt and pyrophosphate on protein extraction from myofibrils reveal the mechanism controlling myosin dissociation. Shen, Qingwu W.,Shen, Qingwu W.,Wang, Zhenyu,Liu, Yue,Gao, Yuan,Zhang, Dequan,Swartz, Darl R..

作者其他论文 更多>>