Next-generation sequencing, assembly, and comparative analyses of the latex transcriptomes from two elite Hevea brasiliensis varieties

文献类型: 外文期刊

第一作者: Li, Dejun

作者: Li, Dejun;Liu, Hui;Zhao, Manman;Deng, Zhi;Li, Yu;Zeng, Rizhong;Tian, Weimin;Hao, Lili;Zhao, Manman

作者机构:

关键词: Expression analysis;Latex transcriptome;Next-generation sequencing;High yielding;Rubber biosynthesis;Rubber tree

期刊名称:TREE GENETICS & GENOMES ( 影响因子:2.297; 五年影响因子:2.547 )

ISSN: 1614-2942

年卷期: 2015 年 11 卷 5 期

页码:

收录情况: SCI

摘要: The great progress has been made in rubber tree breeding, but the molecular mechanisms underlying high yield are not well understood. Here, we reported the sequencing, assembly, and comparative analyses of latex transcriptome from two rubber tree varieties. In total, 33,852 unigenes were generated with de novo assembly. The blastx results indicated that 27,886 and 15,704 unigenes showed significant similarities to known proteins from NCBI nr and Swissprot databases, respectively. Among these annotated unigenes, 21,841 and 9010 ones were separately assigned to Gene Ontology (GO) functional categories and Clusters of Orthologous Groups (COGs). Of 126 KEGG pathways, metabolic pathway was the biggest one, suggesting that active metabolic processes happen in rubber tree latex. In contrast to RRIM 600, 2513 and 1391 genes were separately up-and downregulated in RY 7-20-59. The expression profiles of 25 unigenes were further confirmed by real-time RT-PCR, suggesting that the differently expressed genes (DEGs) identified by RNA-seq were accurate and reliable in this study. The DEGs between RRIM 600 and RY 7-20-59 were significantly enriched in plant-pathogen interactions, phenylpropanoid biosynthesis, phenylalanine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, biosynthesis of secondary metabolites, and photosynthesis. Interestingly, the genes involved in rubber biosynthesis pathway, such as CPT, GPPS, HMGR, HMGS, FPPS and DXS, were differently expressed between RRIM 600 and RY 7-20-59. It was the first time that the latex transcriptomes of two rubber tree varieties have been compared and analyzed on a transcriptome-wide scale. Our results not only enrich the transcriptome data of rubber tree but also provide new insights into understanding latex transcriptome and molecular mechanisms underlying high yielding in rubber tree.

分类号:

  • 相关文献

[1]Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. Gebelin, Virginie,Argout, Xavier,Engchuan, Worrawat,Pitollat, Bertrand,Duan, Cuifang,Montoro, Pascal,Leclercq, Julie,Engchuan, Worrawat,Duan, Cuifang. 2012

[2]The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness. Gebelin, Virginie,Leclercq, Julie,Argout, Xavier,Sarah, Gautier,Montoro, Pascal,Kuswanhadi,Chaidamsari, Tetty,Hu, Songnian,Yang, Meng,Tang, Chaorong. 2013

[3]Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Wang, Yihang. 2018

[4]MYC genes with differential responses to tapping, mechanical wounding, ethrel and methyl jasmonate in laticifers of rubber tree (Hevea brasiliensis Muell. Arg.). Zhao, Yue,Zhou, Li-Min,Chen, Yue-Yi,Yang, Shu-Guang,Tian, Wei-Min,Zhao, Yue. 2011

[5]De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). Li, Dejun,Deng, Zhi,Qin, Bi,Liu, Xianghong,Men, Zhonghua. 2012

[6]Rubber Trees Demonstrate a Clear Retranslocation Under Seasonal Drought and Cold Stresses. Li, Yuwu,Li, Yuwu,Lan, Guoyu,Xia, Yujie. 2016

[7]Design of natural rubber precision ditch fertilization machine. Wang, Yeqin,Deng, Yiguo,Zhang, Yuan,Wei, Lijiao. 2017

[8]Gain-of-function in Arabidopsis (GAINA) for identifying functional genes in Hevea brasiliensis. Cheng, Han,Gao, Jing,Cai, Haibin,Zhu, Jianshun,Huang, Huasun,Cheng, Han,Huang, Huasun. 2016

[9]Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. Liu, Jin-Ping,Zhuang, Yu-Fen,Guo, Xiu-Li,Li, Yi-Jian. 2016

[10]Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis Muell.) to discover putative genes associated with tapping panel dryness (TPD). Liu, Jin-Ping,Tian, Xiao-Yan,Xia, Zhi-Qiang,Li, Yi-Jian. 2015

[11]Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg.. Chen, Yue-Yi,Wang, Li-Feng,Dai, Long-Jun,Yang, Shu-Guang,Tian, Wei-Min,Chen, Yue-Yi.

[12]Ultrasound-assisted tapping of latex from Para rubber tree Hevea brasiliensis. She, Fenghua,Wang, Jin,An, Feng,Lin, Weifu,Zhu, Deming,She, Fenghua,Kong, Lingxue,An, Feng. 2013

[13]Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis. Zhu, Jinheng,Qi, Jiyan,Fang, Yongjun,Xiao, Xiaohu,Lan, Jixian,Tang, Chaorong,Zhu, Jinheng,Lan, Jixian,Tang, Chaorong,Li, Jiuhui. 2018

[14]Proteome analysis of interaction between rootstocks and scions in Hevea brasiliensis. Yuan, Kun,Yang, Li-Fu,Wang, Zhen-Hui,Lin, Wei-Fu,Cao, Jian-Hua,Yuan, Kun,Yang, Li-Fu,Wang, Zhen-Hui,Lin, Wei-Fu,Cao, Jian-Hua,Ding, Xuan. 2011

[15]Regulation of MIR Genes in Response to Abiotic Stress in Hevea brasiliensis. Gebelin, Virginie,Leclercq, Julie,Montoro, Pascal,Hu, Songnian,Tang, Chaorong. 2013

[16]Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis). Bi, Zhenghong,Bi, Zhenghong,Huang, Huasun,Hua, Yuwei,Li, Xiang. 2016

[17]Molecular cloning and characterization of S-adenosylmethionine decarboxylase gene in rubber tree (Hevea brasiliensis). Zhao, Manman,Liu, Hui,Deng, Zhi,Chen, Jiangshu,Yang, Hong,Li, Dejun,Zhao, Manman,Li, Huiping,Xia, Zhihui.

[18]Development, characterization, genetic diversity and cross-species/genera transferability of ILP markers in rubber tree (Hevea brasiliensis). Li, Dejun,Deng, Zhi,Xia, Zhihui,Liu, Xianghong,Feng, Fuying.

[19]Identification of genes differentially expressed in the roots of rubber tree (Hevea brasiliensis Muell. Arg.) in response to phosphorus deficiency. He, Peng,Qin, Huaide,Wu, Min,Wu, Bingsun,Wei, Jiashao,Wang, Dapeng.

[20]Development and characterization of intron-flanking EST-PCR markers in rubber tree (Hevea brasiliensis Muell. Arg.). Li, Dejun,Deng, Zhi,Liu, Xianghong,Xia, Zhihui,Dong, Junmei,Feng, Fuying.

作者其他论文 更多>>