Distribution of selenium and cadmium in soil-rice system of selenium-rich area in Hainan, China

文献类型: 外文期刊

第一作者: Wang, Dengfeng

作者: Wang, Dengfeng;Wei, Zhiyuan;Qi, Zhiping;Tang, Shumei

作者机构:

关键词: Selenium;cadmium;rice;factor analysis;Hainan

期刊名称:PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES ( 影响因子:0.684; 五年影响因子:0.804 )

ISSN: 1011-601X

年卷期: 2014 年 27 卷 5 期

页码:

收录情况: SCI

摘要: Rice, which is the staple food in East Asia, is a source of Selenium (Se) and Cadmium (Cd). The distribution of Se and Cd in soil-rice system is significant to human nutrition and public health. This study is to explore the distribution of Se and Cd in arable land soils and their distribution in polished rice and stalks of Se-rich area. A total of 63 soil samples and 126 rice samples (63 groups of rice grains and stalk samples) were collected from West Hainan Island to determine Se and Cd concentrations. The results suggested the concentration of Se in soil was higher than average level in China, and Cd content was lower than the agricultural land-use threshold of China. The distribution of Se and Cd in arable land soil was primarily determined by diagenesis and mineralization. Se and Cd were more inclined to accumulate in stalks than rice grains, and the contents in polished rice were correlated with that in stalk. Acidification of arable land soil will threaten human nutrition and health for the bioaccumulation factor of Se in polished rice decreased significantly with the decrease of soil pH, while that of Cd in polished rice increased significantly. Therefore, application of lime or alkaline fertilizers in arable land soil of Se-rich area can promote the accumulation of Se in polished rice but reduced the intake of Cd in rice crops.

分类号:

  • 相关文献

[1]Distribution of anthropogenic cadmium and arsenic in arable land soils of Hainan, China. Wang, Dengfeng,Dang, Zhiguo,Feng, Huande,Wang, Rongxiang.

[2]Research on the degradation of tropical arable land soil: Part III the distribution of Cd in Western part of Hainan Island. Wang, Dengfeng,Wei, Zhiyuan,Qi, Zhiping. 2013

[3]Prospect for Treating Antimony-Laden Mine Wastewater Using Local Materials. Ji, Xionghui,Liu, Saihua,Juan, Huang,Jiang, John,He, Ailan,Bocharnikova, Elena,Matichenkov, Vladimir.

[4]Distribution of copper in soil and rice system of Hainan Island, China. Wang Dengfeng,Huang Haijie,Feng Huande,Han Miaojie,Qi Zhiping,Wang Hua. 2016

[5]Separation of selenium species and their sensitive determination in rice samples by ion-pairing reversed-phase liquid chromatography with inductively coupled plasma tandem mass spectrometry. Gao, Huan-Huan,Chen, Ming-Xue,Chen, Ming-Xue,Hu, Xian-Qiao,Chai, Shuang-Shuang,Qin, Mei-Ling,Cao, Zhao-Yun. 2018

[6]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[7]Assessment of Homogeneity and Minimum Sample Mass for Cadmium Analysis in Powdered Certified Reference Materials and Real Rice Samples by Solid Sampling Electrothermal Vaporization Atomic Fluorescence Spectrometry. Mao, Xuefei,Huang, Yatao,Zhang, Lihua,Tang, Xiaoyan,Zhou, Jian,Qian, Yongzhong,Wang, Min,Mao, Xuefei,Huang, Yatao,Zhang, Lihua,Tang, Xiaoyan,Zhou, Jian,Qian, Yongzhong,Wang, Min,Liu, Jixin,Feng, Li.

[8]Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils. Wu, Huibin,Wu, Huibin,Song, Zhengguo,Wang, Xiao,Liu, Zhongqi,Tang, Shirong.

[9]Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. Wang, Xiangqin,Liu Chuanping,Li, Fangbai,Xu, Xianghua,Lv, Yahui,Zeng, Xiaoduo.

[10]Cadmium fate and tolerance in rice cultivars. Zhang, Jie,Sun, Wanchun,Li, Zhaojun,Liang, Yongchao,Zhang, Jie,Song, Alin,Liang, Yongchao.

[11]Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Hu, Pengjie,Li, Zhu,Yuan, Cheng,Huang, Jiexue,Huang, Yujuan,Luo, Yongming,Wu, Longhua,Ouyang, Younan,Luo, Yongming,Christie, Peter. 2013

[12]Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Yang, Yongjie,Chen, Jiangmin,Huang, Qina,Tang, Shaoqing,Hu, Peisong,Shao, Guosheng,Chen, Jiangmin,Wang, Jianlong. 2018

[13]Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. Xue, Dawei,Deng, Xiangxiong,Zhang, Xiaoqin,Xu, Xiangbin,Qian, Qian,Xue, Dawei,Hu, Jiang,Zeng, Dali,Guo, Longbiao,Qian, Qian,Jiang, Hua,Wang, Hua. 2014

[14]Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Yang, Yongjie,Fu, Guanfu,Chen, Tingting,Tao, Longxing,Xiong, Jie,Chen, Ruijie,Xiong, Jie,Chen, Ruijie.

[15]Iron nutrition affects cadmium accumulation and toxicity in rice plants. Shao, Guosheng,Chen, Mingxue,Wang, Weixia,Mon, Renxiang,Zhang, Guoping.

[16]Measuring the damage of heavy metal cadmium in rice seedlings by SRAP analysis combined with physiological and biochemical parameters. Zhang, Xiaoqin,Chen, Huinan,Lu, Wenyi,Pan, Jiangjie,Qian, Qian,Xue, Dawei,Jiang, Hua,Qian, Qian.

[17]Robust method for the analysis of phytochelatins in rice by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry based on polymeric column materials. Yu, Shasha,Bian, Yingfang,Zhou, Rong,Mou, Renxiang,Chen, Mingxue,Cao, Zhaoyun.

[18]Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage. Ji, Xionghui,Liu, Saihua,Juan, Huang,Bocharnikova, Elena A.,Matichenkov, Vladimir V..

[19]Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Guo, B.,Liang, Y. C.,Zhu, Y. G.,Zhao, F. J..

[20]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

作者其他论文 更多>>