Real-time measurement of phloem turgor pressure in Hevea brasiliensis with a modified cell pressure probe

文献类型: 外文期刊

第一作者: An, Feng

作者: An, Feng;Lin, Weifu;An, Feng;Kong, Lingxue;Cahill, David;Rookes, James

作者机构:

关键词: Cell pressure probe;Phloem turgor pressure;Phloem water relationship;Pressure flow theory;Hevea brasiliensis;Sap flow;Tapping

期刊名称:BOTANICAL STUDIES ( 影响因子:2.787; 五年影响因子:2.871 )

ISSN: 1999-3110

年卷期: 2014 年 55 卷

页码:

收录情况: SCI

摘要: Background: Although the pressure flow theory is widely accepted for the transport of photoassimilates in phloem sieve elements, it still requires strong experimental validation. One reason for that is the lack of a precise method for measuring the real-time phloem turgor pressure from the sink tissues, especially in tree trunks. Results: Taking the merits of Hevea brasiliensis, a novel phloem turgor pressure probe based on the state of the art cell pressure probe was developed. Our field measurements showed that the phloem turgor pressure probe can sensitively measure the real-time variation of phloem turgor pressure in H. brasiliensis but the calculation of phloem turgor pressure with xylem tension, xylem sap osmotic potential and phloem sap osmotic potential will under-estimate it. The measured phloem turgor pressure gradient in H. brasiliensis is contrary to the Munch theory. The phloem turgor pressure of H. brasiliensis varied from 8-12 bar as a consequence of water withdrawal from transpiration. Tapping could result in a sharp decrease of phloem turgor pressure followed by a recovery from 8-45 min after the tapping. The recovery of phloem turgor pressure after tapping and its change with xylem sap flow suggest the importance of phloem water relationship in the phloem turgor pressure regulation. Conclusion: The phloem turgor pressure probe is a reliable technique for measuring the real-time variation of phloem turgor pressures in H. brasiliensis. The technique could probably be extended to the accurate measurement of phloem turgor pressure in other woody plants which is essential to test the Munch theory and to investigate the phloem water relationship and turgor pressure regulation.

分类号:

  • 相关文献

[1]Cloning and Molecular Characterization of HbCOI1 from Hevea brasiliensis. Peng, Shi-Qing,Xu, Jing,Li, Hui-Liang,Tian, Wei-Min. 2009

[2]pH induced elastic modulus of guard cell wall in stomatal movement. Yang Yi,Zhao Yang,Zhu GuoLi,Yang Yi. 2011

[3]Variation of phloem turgor pressure in Hevea brasiliensis: An implication for latex yield and tapping system optimization. An, Feng,Lin, Weifu,An, Feng,Kong, Lingxue,Cahill, David,Rookes, James.

[4]Latex dilution reaction during the tapping flow course of Hevea brasiliensis and the effect of Ethrel stimulation. An, Feng,Xie, Guishui,Zou, Zhi,An, Feng,Kong, Lingxue,Cai, Xiuqing,Rookes, James,Cahill, David.

[5]Molecular and biochemical characterization of a cyanogenic beta-glucosidase in the inner bark tissues of rubber tree (Hevea brasiliensis Muell. Arg.). Tian, Wei-Min,Yang, Shu-Guang,Shi, Min-Jing,Dai, Long-Jun,Chen, Yue-Yi,Zhang, Hua,Wang, Xu-Chu. 2013

[6]Plants water status of the shelterbelt along the Tarim Desert Highway. Xu Hao,Zhang XiMing,Yan HaiLong,Liang ShaoMin,Shan LiShan,Xu Hao,Shan LiShan. 2008

[7]Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Gong, Daozhi,Kang, Shaozhong,Yao, Limin,Zhang, Lu.

[8]Modeling evapotranspiration in maize/soybean strip intercropping system with the evaporation and radiation interception by neighboring species model. Gao, Yang,Duan, Aiwang,Qiu, Xinqiang,Sun, Jingsheng,Gao, Yang,Duan, Aiwang,Li, Xinqiang,Pauline, Uzokwe,Sun, Jingsheng,Wang, Hezhou. 2013

[9]A two-dimensional model of root water uptake for single apple trees and its verification with sap flow and soil water content measurements. Gong, Daozhi,Kang, Shaozhong,Zhang, Lu,Du, Taisheng,Yao, Limin. 2006

[10]Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China. Wang, Hong,Wang, Chenbing,Zhao, Xiumei,Wang, Falin,Wang, Chenbing.

[11]Transcriptome-Wide Identification and Characterization of MYB Transcription Factor Genes in the Laticifer Cells of Hevea brasiliensis. Wang, Ying,Zhan, Di-Feng,Li, Hui-Liang,Guo, Dong,Zhu, Jia-Hong,Peng, Shi-Qing,Zhan, Di-Feng. 2017

[12]Three MADS-box genes of Hevea brasiliensis expressed during somatic embryogenesis and in the laticifer cells. Li, Hui-Liang,Wang, Ying,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min. 2011

[13]Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Wang, Yihang. 2018

[14]The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. Xiao, Xiao-Hu,Sui, Jin-Lei,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Yang, Meng,Hu, Song-Nian,Sui, Jin-Lei. 2017

[15]Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). Li, Dejun,Deng, Zhi,Liu, Xianghong,Qin, Bi,Liu, Xianghong. 2013

[16]Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis. Cheng, Han,Chen, Xiang,Zhu, Jianshun,Huang, Huasun. 2016

[17]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

[18]Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. Tong, Zheng,Wang, Dan,Sun, Yong,Yang, Qian,Meng, Xueru,Wang, Limin,Wang, Xuchu,Feng, Weiqiang,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Li, Ling. 2017

[19]Characterization of HbWRKY1, a WRKY transcription factor from Hevea brasiliensis that negatively regulates HbSRPP. Wang, Ying,Guo, Dong,Li, Hui-Liang,Peng, Shi-Qing,Wang, Ying,Peng, Shi-Qing. 2013

[20]Laticifer differentiation in Hevea brasiliensis: Induction by exogenous jasmonic acid and linolenic acid. Hao, BZ,Wu, JL. 2000

作者其他论文 更多>>