Insight into Differential Responses of Upland and Paddy Rice to Drought Stress by Comparative Expression Profiling Analysis

文献类型: 外文期刊

第一作者: Ding, Xipeng

作者: Ding, Xipeng;Li, Xiaokai;Xiong, Lizhong;Ding, Xipeng;Li, Xiaokai;Xiong, Lizhong;Ding, Xipeng

作者机构:

关键词: Oryza sativa;expression pattern;drought resistance;quantitative trail loci;near isogenic lines

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2013 年 14 卷 3 期

页码:

收录情况: SCI

摘要: In this study, the drought responses of two genotypes, IRAT109 and Zhenshan 97 (ZS97), representing upland and paddy rice, respectively, were systematically compared at the morphological, physiological and transcriptional levels. IRAT109 has better performance in traits related to drought avoidance, such as leaf rolling, root volumes, the ratio of leaf water loss and relative conductivity. At the transcriptional level, more genes were induced by drought in IRAT109 at the early drought stage, but more genes had dynamic expression patterns in ZS97 at different drought degrees. Under drought conditions, more genes related to reproductive development and establishment of localization were repressed in IRAT109, but more genes involved in degradation of cellular components were induced in ZS97. By checking the expression patterns of 36 drought-responsive genes (located in 14 quantitative trail loci [QTL] intervals) in ZS97, IRAT109 and near isogenic lines (NILs) of the QTL intervals, we found that more than half of these genes had their expression patterns or expression levels changed in the NILs when compared to that in ZS97 or IRAT109. Our results may provide valuable information for dissecting the genetic bases of traits related to drought resistance, as well as for narrowing the candidate genes for the traits.

分类号:

  • 相关文献

[1]Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation. Wang, Jingxue,Li, Chen,Yuan, Ling,Singh, Sanjay K.,Pattanaik, Sitakanta,Yuan, Ling,Du, Chunfang,Fan, Jianchun. 2016

[2]QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Luo, Xiao,Lee, Hyun-Sook,Kim, Dong-Min,Balkunde, Sangshetty,Kang, Ju-Won,Ahn, Sang-Nag,Ji, Shi-Dong,Yuan, Ping-Rong. 2013

[3]The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley. Chen, Guangdeng,Yan, Wei,Liu, Yaxi,Manners, John M.,Liu, Chunji,Chen, Guangdeng,Liu, Yaxi,Wei, Yuming,Zheng, You-Liang,Chen, Guangdeng,Yan, Wei,Zhou, Meixue,Liu, Chunji. 2014

[4]Relative fitness of near isogenic lines for melanie and typical forms of the oriental armyworm, Mythimna separata (Walker). Luo, Li-Zhi,Zhang, Lei. 2007

[5]A fast generation cycling system for oat and triticale breeding. Liu, Hui,Yan, Guijun,Zwer, Pamela,Wang, Haibo,Liu, Chunji,Lu, Zhanyuan,Wang, Yanxia.

[6]Identification and validation of a major QTL for salt tolerance in soybean. Hamwieh, A.,Tuyen, D. D.,Xu, D. H.,Hamwieh, A.,Tuyen, D. D.,Cong, H.,Benitez, E. R.,Takahashi, R..

[7]Evaluation of drought resistance in Iris germanica L. based on subordination function and principal component analysis. Bo, Wei,Xing, Guoming,Bo, Wei,Fu, Baochun,Qin, Guojie,Wang, Yuguo. 2017

[8]Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Guo, Jiufeng,Zhang, Jinpeng,Wang, Guoying,Wang, Guoying,Guo, Jiufeng,Su, Guoqin. 2008

[9]Study On The Relationship Between The Winter Wheat Thermal Infrared Image Characteristics And Physiological Indicators. Chen Zi-long,Wang Cheng,Zhu Da-zhou. 2014

[10]The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Yu, Yanwen,Gu, Juntao,Wang, Fengru,Dong, Jingao,Yu, Yanwen,Yang, Dexin,Zhou, Shirong,Huang, Rongfeng,Huang, Rongfeng.

[11]A proposed selection criterion for drought resistance across multiple environments in maize. Hao, Zhuan-Fang,Li, Xin-Hai,Su, Zhi-Jun,Xie, Chuan-Xiao,Li, Ming-Shun,Weng, Jian-Feng,Zhang, De-Gui,Li, Liang,Zhang, Shi-Huang,Liang, Xiao-Ling,Li, Liang.

[12]Analysis of global gene expression profiles in tobacco roots under drought stress. Pan, Guangtang,Yin, Fuqiang,Liu, Ming,Zhang, Wenyou,Qin, Cheng,Shen, Yaou,Lin, Haijian,Zhang, Zhiming,Yang, Aiguo,Luo, Chenggang,Liu, Haobao,Gao, Jian,Gao, Jian,Gao, Jian. 2015

[13]Comprehensive Screening of Some West and Central African Sesame Genotypes for Drought Resistance Probing by Agromorphological, Physiological, Biochemical and Seed Quality Traits. Dossa, Komivi,Yehouessi, Louis W.,Cisse, Ndiaga,Dossa, Komivi,Liao, Boshou,Zhang, Xiurong,Dossa, Komivi,Diouf, Diaga,Likeng-Li-Ngue, Benoit C.,Bell, Joseph M.. 2017

[14]Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance. Zhang, Tiejun,Kesoju, Sandya,Hu, Jinguo,Yu, Long-Xi,Zhang, Tiejun,Kesoju, Sandya,Greene, Stephanie L.,Fransen, Steven. 2018

[15]Transformation of trehalose synthase gene (TPS Gene) into corn inbred line and identification of drought tolerance. Dong Chun-lin,Zhang Ming-yi,Zhang Yan-qin,Yang Li-li,Liang Gai-mei,Sun Jie,Lin Zhong-ping,Gou Jjian-fang. 2011

[16]Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Liu, Xiulin,Chang, Xiaoping,Jing, Ruilian,Liu, Xiulin,Li, Runzhi.

[17]Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau of China. Li, Ping,Wu, Xuexia,Liu, Yujiao,Li, Ping,Liu, Yujiao,Zhang, Yanxia,Li, Ping,Liu, Yujiao. 2018

[18]Genetic Analysis on Characteristics to Measure Drought Resistance Using Dongxiang Wild Rice (Oryza rufupogon Griff.) and Its Derived Backcross Inbred Lines Population at Seedling Stage. Hu Biao-lin,Zhang Tao,Wan Yong,Li Xia,Xie Jian-kun,Hu Biao-lin,Fu Xue-qin,Huang Yun-hong,Dai Liang-fang,Luo Xiang-dong,Xie Jian-kun. 2011

[19]Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Lu, Yanli,Shah, Trushar,Farkhari, Mohammad,Xu, Yunbi,Lu, Yanli,Cao, Moju,Rong, Tingzhao,Xu, Yunbi,Farkhari, Mohammad,Ribaut, Jean-Marcel.

[20]Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Hao, Zhuanfang,Xie, Chuanxiao,Li, Xinhai,Zhang, Shihuang,Lu, Yanli,Crossa, Jose,Araus, Jose-Luis,Taba, Suketoshi,Xu, Yunbi,Lu, Yanli,Gao, Shibin,Pan, Guangtang,Rong, Tingzhao,Vivek, Bindiganavile S.,Magorokosho, Cosmos,Mugo, Stephen,Makumbi, Dan,Xu, Yunbi.

作者其他论文 更多>>