Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita

文献类型: 外文期刊

第一作者: Yan, Xiao-ning

作者: Yan, Xiao-ning;Zheng, Jing-wu;Sikora, Richard A.;Yan, Xiao-ning

作者机构:

关键词: Cucumber endophytic fungi;Meloidogyne incognita;Control efficacy;Colonization;In vitro activity

期刊名称:JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B ( 影响因子:3.066; 五年影响因子:3.057 )

ISSN: 1673-1581

年卷期: 2011 年 12 卷 3 期

页码:

收录情况: SCI

摘要: Seed treatment with endophytic fungi has been regarded as an effective method for plant parasitic nematode control. Endophytic fungi from cucumber seedlings were isolated and screened for their potential to be used as seed treatment agents against Meloidogyne incognita. Among the 294 isolates screened, 23 significantly reduced galls formed by M. incognita in greenhouse test. The 10 most effective isolates were Fusarium (5), Trichoderma (1), Chaetomium (1), Acremonium (1), Paecilomyces (1), and Phyllosticta (1). Their control efficacies were repeatedly tested and their colonizations as well as in vitro activity against M. incognita were studied. They reduced the number of galls by 24.0%-58.4% in the first screening and 15.6%-44.3% in the repeated test, respectively. Phyllosticta Ph511 and Chaetomium Ch1001 had high colonizations on both the roots and the aboveground parts of cucumber seedlings. Fusarium isolates had colonization preference on the roots, their root colonizations ranging from 20.1% to 47.3% of the total root area. Trichoderma Tr882, Paecilomyces Pa972, and Acremonium Ac985 had low colonizations on both the roots and the aboveground parts. Acremonium Ac985, Chaetomium Ch1001, Paecilomyces Pa972, and Phyllosticta Ph511 produced compounds affecting motility of the second stage juveniles of M. incognita. Based on these results, Chaetomium Ch1001 was considered to have the highest potential as a seed treatment agent for M. incognita biocontrol.

分类号:

  • 相关文献

[1]Weed and insect control affected by mixing insecticides with glyphosate in cotton. MA Xiao-yan,WU Han-wen,JIANG Wei-li,MA Ya-jie,MA Yan.

[2]Potential impact and non-target effects of Gallerucida bifasciata (Coleoptera: Chrysomelidae), a candidate biological control agent for Fallopia japonica. Ding, Jianqing,Wang, Yangzhou,Wang, Yangzhou,Wilson, John R. U.,Wilson, John R. U.,Zhang, Jun,Zhang, Jialiang,Ding, Jianqing.

[3]Characterization of Rhizoctonia cerealis sensitivity to thifluzamide in China. Sun, Haiyan,Wang, Chengfeng,Li, Wei,Zhang, Aixiang,Deng, Yuanyu,Chen, Huaigu.

[4]Dissipation dynamics of clothianidin and its control efficacy against Bradysia odoriphaga Yang and Zhang in Chinese chive ecosystems. Zhang, Peng,Zhao, Yunhe,Ren, Yupeng,Wei, Yan,Mu, Wei,Liu, Feng,Zhang, Peng,He, Min.

[5]Sensitivity to silthiofam, tebuconazole and difenoconazole of Gaeumannomyces graminis var. tritici isolates from China. Yun, Yingzi,Yu, Fangwei,Yin, Yanni,Ma, Zhonghua,Wang, Ning,Chen, Huaigu.

[6]Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis (Guenee). Wu, Kongming,Peng, Yufa,Wang, Feng,Guo, Yuyuan. 2007

[7]Evaluation of tebuconazole for the management of Fusarium head blight in China. Sun, H. -Y.,Zhu, Y. -F,Liu, Y. -Y.,Deng, Y. -Y.,Li, W.,Zhang, A. -X.,Chen, H. -G..

[8]Comparative soil distribution and dissipation of phoxim and thiamethoxam and their efficacy in controlling Bradysia odoriphaga Yang and Zhang in Chinese chive ecosystems. Zhang, Peng,Wei, Yan,Zhao, Yunhe,Mu, Wei,Liu, Feng,Zhang, Peng,He, Min.

[9]Activity of a novel bactericide, zinc thiazole against Xanthomonas oryzae pv. oryzae in Anhui Province of China. Chen, Y.,Yang, X.,Gu, C-Y.,Zhang, A-F.,Zhang, Y.,Wang, W-X.,Gao, T-C.,Yao, J.,Yuan, S-K.,Chen, Y.,Yang, X.,Gu, C-Y.,Zhang, A-F.,Zhang, Y.,Wang, W-X.,Gao, T-C.,Chen, Y.,Yang, X.,Gu, C-Y.,Zhang, A-F.,Zhang, Y.,Wang, W-X.,Gao, T-C..

[10]Thiamethoxam seed treatment for control of rice thrips (Chloethrips oryzae) and its effects on the growth and yield of rice (Oryza sativa). Liu, Xueyuan,Wang, Pei,Fu, Wei,Ma, Mingyong.

[11]Managing Meloidogyne incognita and Bemisia tabaci with thiacloprid in cucumber crops in China. Dong, Sa,Qiao, Kang,Xia, Xiaoming,Wang, Kaiyun,Zhu, Yukun,Wang, Hongyan. 2014

[12]Isolation of nematophagous fungi from eggs and females of Meloidogyne spp. and evaluation of their biological control potential. Aminuzzaman, F. M.,Xie, H. Y.,Duan, W. J.,Sun, B. D.,Liu, X. Z.. 2013

[13]Effectiveness of 1,3-dichloropropene as an alternative to methyl bromide in rotations of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) in China. Qiao, Kang,Dong, Sa,Xia, Xiaoming,Wang, Kaiyun,Wang, Hongyan,Ji, Xiaoxue. 2012

[14]Effect of abamectin on root-knot nematodes and tomato yield. Qiao, Kang,Liu, Xia,Xia, Xiaoming,Wang, Kaiyun,Wang, Hongyan,Ji, Xiaoxue.

[15]Flame soil disinfestation: A novel, promising, non-chemical method to control soilborne nematodes, fungal and bacterial pathogens in China. Wang, Qiuxia,Yan, Dongdong,Li, Yuan,Ouyang, Canbin,Guo, Meixia,Cao, Aocheng,Mao, Liangang,Wang, Qiuxia,Yan, Dongdong,Li, Yuan,Ouyang, Canbin,Guo, Meixia,Cao, Aocheng.

[16]New Nematotoxic Indoloditerpenoid Produced by Gymnoascus reessii za-130. Liu, Ting,Dong, Dan,Zhang, TaoTao,Liu, Wei-cheng,Meyer, Susan L. F.,Chitwood, David J.,Chauhan, Kamlesh R.,Li, Jun.

[17]Expression and evolutionary analyses of three acetylcholinesterase genes (Mi-ace-1, Mi-ace-2, Mi-ace-3) in the root-knot nematode Meloidogyne incognita. Zhang, Lei,Chen, Yuyan,Sun, Xiaotang,Huang, Wenkun,Wu, Qingsong,Peng, Deliang,Fan, Chengming,da Silva, Washington.

[18]GC-MS Analysis of Nematicidal Essential Oil of Mentha canadensis Aerial Parts against Heterodera avenae and Meloidogyne incognita. Ji, Hua,Li, Yun Chao,Wen, Zhi Yu,Li, Hong Tao,Ji, Hua,Li, Yun Chao,Wen, Zhi Yu,Li, Hong Tao,Li, Xiu Hua,Zhang, Hai Xin.

[19]Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Tian, Xueliang,Tian, Xueliang,Yao, Yurong,Chen, Guohua,Mao, Zhenchuan,Xie, Bingyan,Wang, Xiaotian.

[20]Cloning and functional analyses of pepper CaRKNR involved in Meloidogyne incognita resistance. Mao, Zhenchuan,Zhu, Pingping,Liu, Feng,Huang, Yonghong,Ling, Jian,Chen, Guohua,Yang, Yuhong,Feng, Dongxin,Xie, Bingyan.

作者其他论文 更多>>