Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas

文献类型: 外文期刊

第一作者: Lu, Y.

作者: Lu, Y.;Li, H. P.;Lu, Y.;Xie, Y. X.;Zhang, X.;Pu, J. J.;Qi, Y. X.;Xu, W. H.

作者机构:

关键词: Resistance genes;NBS-LRR;Banana

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2011 年 10 卷 4 期

页码:

收录情况: SCI

摘要: Commercial banana varieties are highly susceptible to fungal pathogens, as well as bacterial pathogens, nematodes, viruses, and insect pests. The largest known family of plant resistance genes encodes proteins with nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. Conserved motifs in such genes in diverse plant species offer a means for the isolation of candidate genes in banana that may be involved in plant defense. Six degenerate PCR primers were designed to target NBS and additional domains were tested on commercial banana species Musa acuminata subsp malaccensis and the Musa AAB Group propagated in vitro and plants maintained in a greenhouse. Total DNA was isolated by a modified CTAB extraction technique. Four resistance gene analogs were amplified and deposited in GenBank and assigned numbers HQ199833-HQ199836. The predicted amino acid sequences compared to the amino acid sequences of known resistance genes (MRGL1, MRGL2, MRGL3, and MRGL4) revealed significant sequence similarity. The presence of consensus domains, namely kinase-1a, kinase-2 and hydrophobic domain, provided evidence that the cloned sequences belong to the typical non-Toll/interleukin-1 receptor-like domain NBS-LRR gene family.

分类号:

  • 相关文献

[1]Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Pei, Xinwu,Li, Shengjun,Jiang, Ying,Zhang, Yongqiang,Wang, Zhixing,Jia, Shirong.

[2]Genetic diversity of NBS-LRR class disease-resistance gene analogs in cultivated and wild eggplants. Zhuang, Yong,Zhou, Xiaohui,Wang, Shubin. 2012

[3]Cloning and analysis of a NBS-LRR disease resistance gene candidate PnAG(1) from peanut (Arachis hypogaea L.). Wan, Shu-bo,Shan, Shi-hua,Zhang, Ting-ting,Li, Chun-juan,Yang, Chen,Yan, Cai-xia,Yang, Chen. 2011

[4]Heterologous Expression of the Cotton NBS-LRR Gene GbaNA1 Enhances Verticillium Wilt Resistance in Arabidopsis. Li, Nan-Yang,Zhou, Lei,Zhang, Dan-Dan,Li, Ting-Gang,Gui, Yue-Jing,Kong, Zhi-Qiang,Ma, Xue-Feng,Zhang, Wen-Qi,Li, Jun-Jiao,Chen, Jie-Yin,Dai, Xiao-Feng,Klosterman, Steven J.,Short, Dylan P. G.,Subbarao, Krishna V.. 2018

[5]A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. Chen, Jie,Shi, Yongfeng,Liu, Wenzheng,Fu, Yaping,Zhuang, Jieyun,Wu, Jianli,Chai, Rongyao. 2011

[6]Isolation of resistance gene analogs from grapevine resistant to downy mildew. Wang, Ping,Wang, Dongxu,Liang, Chunhao,Fan, Jinjuan,Wang, Ping,Liu, Changyuan,Liang, Chunhao,Zhao, Kuihua. 2013

[7]Isolation and Characterization of Mlo and NBS-LRR-like Gene Sequences in Wheat. Li, AL,Kong, XY,Zhou, RH,Ma, ZY,Jia, JZ.

[8]Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. Wan, Hongjian,Bo, Kailiang,Shen, Jia,Pang, Xin,Chen, Jinfeng,Wan, Hongjian,Yuan, Wei. 2013

[9]Characterization and induction kinetics of a putative candidate gene associated with downy mildew resistance in grapevine. Liang, C.,Liu, L.,Zang, C.,Zhao, K.,Liu, C..

[10]Genome-Wide Association Study Identifies NBS-LRR-Encoding Genes Related with Anthracnose and Common Bacterial Blight in the Common Bean. Wu, Jing,Zhu, Jifeng,Wang, Lanfen,Wang, Shumin. 2017

[11]Construction and characterization of a bacterial artificial chromosome library of the maize inbred line Qi319. Mu, Chun Hua,Zhang, Fa Jun,Li, Wen Cai,Lu, Shou Ping,Meng, Zhao Dong,Liu, Xia,Mu, Chun Hua,Liu, Xia,Yang, Yu,Li, Guang Cun. 2016

[12]PRSRW: AN EXPERT SYSTEM FOR POSTULATING AND INFERRING RESISTANCE GENES TO WHEAT STRIPE RUST. Yang, Yu,Wang, Lianzhi,Bian, Qiang,Xu, Shichang,Wang, Fengle. 2009

[13]Fine mapping and identification of the soybean R-SC4 resistance candidate gene to soybean mosaic virus. Wang, Dagang,Ma, Ying,Liu, Ning,Yang, Zhonglu,Zheng, Guijie,Zhi, Haijian,Wang, Dagang. 2011

[14]Genetic Analysis of Chinese Differential Cultivar Early Premium for Yellow Rust Resistance Genes. Feng, Jing,Gan, Ai-Hua,Lin, Rui-Ming,Xu, Shichang. 2011

[15]Gene Expression Profiling and Identification of Resistance Genes to Aspergillus flavus Infection in Peanut through EST and Microarray Strategies. Bhatnagar, Deepak,Yu, Jiujiang,Guo, Baozhu,Fedorova, Natalie D.,Wan, Chun-Hua,Wang, Wei,Nierman, William C.,Chen, Xiaoping,Chen, Xiaoping,Nierman, William C.. 2011

[16]Multi-Drug Resistance Mediated by Class 1 Integrons in Aeromonas Isolated from Farmed Freshwater Animals. Deng, Yuting,Wu, Yali,Jiang, Lan,Tan, Aiping,Zhang, Ruiquan,Luo, Li,Wu, Yali. 2016

[17]Powdery mildew resistance in a collection of Chinese barley varieties. Dreiseitl, Antonin,Yang, Jianming. 2007

[18]Genetic mapping of bph20(t) and bph21(t) loci conferring brown planthopper resistance to Nilaparvata lugens StAyenl in rice (Oryza sativa L.). Li, R. B.,Chen, Y. Z.,Yang, L.,Li, R. B.,Chen, Y. Z.,Yang, L.,Li, R. B.,Li, Y. R.,Chen, Y. Z.,Liu, Ch.,Ma, Z. F.,Huang, D. H.,Yang, L.,Huang, F. K.,Huang, S. Sh.,Huang, L. F.,Jiang, J. J.. 2012

[19]Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Han, Yingpeng,Sun, Mingming,Zhao, Yue,Lv, Chunmei,Li, Dongmei,Teng, Weili,Li, Wenbin,Li, Yinghui,Qiu, Lijuan,Liu, Dongyuan,Yang, Zhijiang,Huang, Long,Zheng, Hongkun,Sun, Mingming,Lv, Chunmei.

[20]Different methods of incorporating ciprofloxacin in soil affect microbiome and degradation of ciprofloxacin residue. Liu, Longyong,Mi, Jiandui,Wang, Yan,Liao, Xindi,Wu, Yinbao,Liu, Longyong,Mi, Jiandui,Wang, Yan,Liao, Xindi,Wu, Yinbao,Liu, Longyong,Mi, Jiandui,Wang, Yan,Liao, Xindi,Wu, Yinbao,Zou, Yongde,Ma, Baohua,Liang, Juan Boo,Liu, Longyong,Mi, Jiandui,Wang, Yan,Liao, Xindi,Wu, Yinbao. 2018

作者其他论文 更多>>