Cloning and expression of pineapple sucrose-phosphate synthase gene during fruit development
文献类型: 外文期刊
第一作者: Zhang, Xiumei
作者: Zhang, Xiumei;Du, Liqing;Xie, Jianghui;Dou, Mei'an;Mo, Yiwei;Sun, Guangming;Zhang, Xiumei;Zhang, Xiumei;Du, Liqing;Xie, Jianghui;Dou, Mei'an;Mo, Yiwei;Sun, Guangming;Wang, Wei
作者机构:
关键词: Pineapple fruit;sucrose phosphate synthase;gene cloning;expression
期刊名称:AFRICAN JOURNAL OF BIOTECHNOLOGY ( 影响因子:0.573; 五年影响因子:0.794 )
ISSN: 1684-5315
年卷期: 2010 年 9 卷 49 期
页码:
收录情况: SCI
摘要: A 1132-base pairs (bp) polymerase-chain-reaction product of sucrose-phosphate synthase (SPS) (EC 2.3.1.14) from pineapple (Ananas comosus cv. Comte de paris) fruit was cloned and nominated as Ac-SPS1. The sequence encodes a putative 377 amino acids protein containing two serine conserved features that had been found in other plant SPS genes: the presence of a 14-3-3 protein special binding domain and an activated site of osmosis stress, which can been activated by phosphorylation and dephosphorylation. The Neighbour-joining tree revealed that Ac-SPS1 belonged to the first kind of sucrose phosphate synthase gene. The results indicated that, the Ac-SPS1 expression was low in the earlier period of fruit growth, then, increasing from 20 days after anthesis and gradually a falling on 40 days, reached the peak with the highest value around 70 days. The SPS activity and sucrose content reached their maximum 80 days after anthesis. It proved that the accumulation of sucrose was correlated with SPS activity and mRNA content and it maximally occurred at 10 d after SPS mRNA and activity had reached its maxima. These results indicated that Ac-SPS1 gene played a key role in sucrose accumulation during the pineapple fruit development and transcriptional activation with increase in Ac-SPS1 expression might be important regulatory events of sugar during pineapple fruit maturation.
分类号:
- 相关文献
作者其他论文 更多>>
-
Whole genome and transcriptome analyses in dairy goats identify genetic markers associated with high milk yield
作者:Zhao, Jianqing;Shi, Chenbo;Kamalibieke, Jiayidaer;Mu, Yuanpan;Zhu, Lu;Wang, Wei;Luo, Jun;Gong, Ping;Lv, Xuefeng
关键词:Dairy goat; Selective signal analysis; Genome-wide association study; Transcriptomic analyses; Milk yield
-
Detection and characterization of bovine hepacivirus in cattle and sheep from Hulunbuir, northeastern China
作者:Ma, Jingge;Liu, Ziyan;Liu, Ning;Wang, Zedong;Ma, Jingge;Wei, Feng;Wei, Zhiwei;Zheng, Xiangyu;Li, Liang;Liu, Ziyan;Wang, Wei
关键词:bovine hepacivirus (BovHepV); sheep; cattle; phylogenetic evolution; China
-
Effects of maternal Escherichia coli lipopolysaccharide exposure on offspring: insights from lncRNA analysis in laying hens
作者:Yan, Zhixun;Liu, Huagui;Chu, Qin;Liu, Lei;Liu, Lei;Yu, Ying;Wang, Wei;Adetula, Adeyinka Abiola
关键词:LPS maternal stimulation; Chicken; Offspring; Egg-laying rate; lncRNA
-
Comparative transcriptome profiling reveals the key genes and molecular mechanisms involved in rice under blast infection
作者:Li, Gang;Wang, Jian;Cheng, Baoshan;Wang, Di;Gao, Hao;Xu, Weijun;Wang, Wei;Gao, Qingsong;Zhang, Wenxia;Ji, Jianhui;Li, Bianhao;Zhang, Guoliang;Qi, Zhongqiang;Liu, Yongfeng
关键词:Rice; Blast; Transcriptome; Disease resistance; Hormones; Biochemical indicators
-
Ac/Ds-like Transposon Elements Inserted in ZmABCG2a Cause Male Sterility in Maize
作者:Wang, Le;Arshad, Saeed;Li, Taotao;Wei, Mengli;Jia, Haiyan;Ma, Zhengqiang;Yan, Yuanxin;Ren, Hong;Wang, Wei;Yan, Yuanxin
关键词:maize (
Zea mays ); seed production;ZmABCG2a ; mutantms*-N125 ; mutantms*-P884 -
Visible light photocatalytic degradation of pesticides and antibiotics by H3PO4-activated biochar combined with g-C3N4: Effects, mechanism, degradation pathway, and toxicity assessment
作者:Shi, Haojie;Wang, Wei;Mao, Liangang;Zhang, Lan;Zhu, Lizhen;Wu, Chi;Liu, Xingang
关键词:Biochar; Pesticide; Antibiotic; Photodegradation
-
Legume intercropping improves soil organic carbon stability in drylands: A 7-year experimental validation
作者:Wang, Wei;Li, Meng-Ying;Wang, Yang;Li, Jian-Ming;Zhang, Wei;Wen, Qin-Hui;Huang, Shuang-Jin;Wang, Jing;Ullah, Fazal;Xiong, You-Cai;Chen, Guang-Rong;Zhu, Shuang-Guo
关键词:Climate-smart agriculture; Legume intercropping; SOC stability; Microbial necromass; Enzyme stoichiometry