Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants

文献类型: 外文期刊

第一作者: Zheng, Yusheng

作者: Zheng, Yusheng;Wang, Zhekui;Li, Dongdong;Xu, Li;Zhou, Peng;Ye, Rongjian;Lin, Yongjun;Ye, Rongjian;Lin, Yongjun

作者机构:

关键词: Coconut (Cocos nucifera L.);Endosperm-specific;Function analysis;Promoter;Transgenic rice

期刊名称:PLANT CELL REPORTS ( 影响因子:4.57; 五年影响因子:4.463 )

ISSN: 0721-7714

年卷期: 2010 年 29 卷 9 期

页码:

收录情况: SCI

摘要: As one of the key tropical crops, coconut (Cocos nucifera L.) is a member of the monocotyledonous family Aracaceae (Palmaceae). In this study, we amplified the upstream region of an endosperm-specific expression gene, Lysophosphatidyl acyltransferase (LPAAT), from the coconut genomic DNA by chromosome walking. In this sequence, we found several types of promoter-related elements including TATA-box, CAAT-box and Skn1-motif. In order to further examine its function, three different 5'-deletion fragments were inserted into pBI101.3, a plant expression vector harboring the LPAAT upstream sequence, leading to pBI101.3-L1, pBI101.3-L2 and pBI101.3-L3, respectively. We obtained transgenic plants of rice by Agrobacterium-mediated callus transformation and plant regeneration and detected the expression of gus gene by histochemical staining and fluorometric determination. We found that gus gene driven by the three deletion fragments was specifically expressed in the endosperm of rice seeds, but not in the empty vector of pBI101.3 and other tissues. The highest expression level of GUS was at 15 DAF in pBI101.3-L3 and pBI101.3-L2 transgenic lines, while the same level was detected at 10 DAF in pBI101.3-L1. The expression driven by the whole fragment was up to 1.76- and 2.8-fold higher than those driven by the -817 bp and -453 bp upstream fragments, and 10.7-fold higher than that driven by the vector without the promoter. Taken together, our results strongly suggest that these promoter fragments from coconut have a significant potential in genetically improving endosperm in main crops.

分类号:

  • 相关文献

[1]Evaluation and characterization of an endosperm-specific sbeIIa promoter in wheat. Miao, HM,Fleming, JE,Lu, DB,Han, JF.

[2]Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. Wan, Yongqing,Mao, Mingzhu,Yang, Qi,Li, Guojing,Wang, Ruigang,Wan, Dongli,Yang, Feiyun,Mandlaa. 2018

[3]Gene cloning and function analysis of ABP9 protein which specifically binds to ABRE2 motif of maize Cat1 gene. Wang, L,Zhao, J,Fan, YL. 2002

[4]Identification and Comparative Analysis of CBS Domain-Containing Proteins in Soybean (Glycine max) and the Primary Function of GmCBS21 in Enhanced Tolerance to Low Nitrogen Stress. Hao, Qingnan,Shang, Weijuan,Zhang, Chanjuan,Chen, Haifeng,Chen, Limiao,Yuan, Songli,Zhou, Xinan,Hao, Qingnan,Shang, Weijuan,Zhang, Chanjuan,Chen, Haifeng,Chen, Limiao,Yuan, Songli,Chen, Shuilian,Zhang, Xiaojuan,Zhou, Xinan. 2016

[5]Cloning and functional analyses of pepper CaRKNR involved in Meloidogyne incognita resistance. Mao, Zhenchuan,Zhu, Pingping,Liu, Feng,Huang, Yonghong,Ling, Jian,Chen, Guohua,Yang, Yuhong,Feng, Dongxin,Xie, Bingyan.

[6]Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens. Li, Hong,Wang, Taian,Xu, Chunlin,Wang, Dandan,Ren, Junxiao,Li, Yanmin,Tian, Yadong,Wang, Yanbin,Jiao, Yuping,Kang, Xiangtao,Liu, Xiaojun,Tian, Yadong,Wang, Yanbin,Kang, Xiangtao,Liu, Xiaojun,Kang, Xiangtao,Liu, Xiaojun,Jiao, Yuping. 2015

[7]Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Li, Wei-wei,Liu, Jia-ming,Guo, Chang-Hong,Chen, Ming,Xu, Zhao-shi,Li, Lian-cheng,Zhou, Yong-Bin,Ma, You-Zhi,Zhong, Li.

[8]Progress of reverse genetics technique in influenza virus. Liu Da-Fei,Liu Chun-Guo,Liu Ming,Liu Da-Cheng. 2008

[9]Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Ma, Jin,Song, Yunzhi,Wu, Bin,Li, Kaidong,Zhu, Changxiang,Wen, Fujiang,Jiang, Mingsong. 2011

[10]Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi. Jiang, Yayuan,Sun, Lin,Li, Kaidong,Song, Yunzhi,Zhu, Changxiang,Jiang, Mingsong.

[11]Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Sun, Lin,Lin, Chao,Du, Jinwen,Song, Yunzhi,Liu, Hongmei,Zhou, Shumei,Wen, Fujiang,Zhu, Changxiang,Jiang, Mingsong.

[12]Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C-4 genes. Huang, XQ,Jiao, DM,Chi, W,Ku, MSB. 2002

[13]The characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Jiao, DM,Li, X,Huang, XQ,Wei, C,Kuang, TY,Maurice, KSB. 2001

[14]Establishment of a rice transgene flow model for predicting maximum distances of gene flow in Southern China. Yao, Kemin,Hu, Ning,Chen, Wanlong,Li, Renzhong,Yuan, Qianhua,Wang, Feng,Qian, Qian. 2008

[15]Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Qiu, Dewen,Mao, Jianjun,Yang, Xiufen,Zeng, Hongmei. 2009

[16]Lethal and Sub-Lethal Effects of Transgenic Rice Containing cry1Ac and CpTI Genes on the Pink Stem Borer, Sesamia inferens (Walker). Han Lan-zhi,Hou Mao-lin,Wu Kong-ming,Peng Yu-fa,Wang Feng. 2011

[17]Event-specific qualitative and quantitative detection of transgenic rice Kefeng-6 by characterization of the transgene flanking sequence. Wang, Wei-Xia,Lai, Feng-Xiang,Fu, Qiang,Zhu, Ting-Heng. 2011

[18]Transgenic fertile japonica rice plants expressing a modified crylA(b) gene resistant to yellow stem borer. Wu, C,Fan, Y,Zhang, C,Oliva, N,Datta, SK. 1997

[19]Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera : Miridae) - A case study of the compatibility of Bt rice with biological control. Liu, Zhi-Cheng,Ye, Gong-yin,Shen, Zhi-cheng,Hu, Cui,Peng, Yu-fa,Altosaar, Illimar,Shelton, Anthony M.. 2007

[20]Functional and numerical responses of Cyrtorhinus lividipennis to eggs of Nilaparvata lugens are not affected by genetically modified herbicide-tolerant rice. Huang Qian,Long Li-ping,Ling Yan,Huang Suo-sheng,Wu Bi-qiu,Huang Feng-kuan,Cai Jian-he,Chen Yu-chong,Xiao Guo-ying. 2015

作者其他论文 更多>>