Vegetative storage proteins in the tropical tree Swietenia macrophylia: seasonal fluctuation in relation to a fundamental role in the regulation of tree growth

文献类型: 外文期刊

第一作者: Tian, WM

作者: Tian, WM;Wu, JL;Hao, BZ;Hu, ZH

作者机构:

关键词: vegetative storage proteins;nitrogen metabolism;Populus-type of protein-storing cells;tropical hardwoods;Swietenia macrophylla King

期刊名称:CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE ( 影响因子:1.397; 五年影响因子:1.733 )

ISSN: 0008-4026

年卷期: 2003 年 81 卷 5 期

页码:

收录情况: SCI

摘要: The protein-storing cells in Swietenia macrophylla King were investigated. They were found to be of the Populus type, i.e., ordinary parenchyma cells containing both vacuole protein inclusion and starch grains. Vegetative storage proteins with molecular masses of 18 and 21 kDa were separated by SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). Immunoblotting with the 21-kDa protein antiserum showed that the 18- and 21-kDa proteins shared common epitopes. The 21-kDa protein and presumably the 18-kDa protein were demonstrated by immunogold labeling to be the main components of the vacuole protein inclusion of the protein-storing cells. At the late stage of an annual growth cycle, vegetative storage proteins were found in the branchlets, trunk, large roots, and small roots. They were stored in large amounts in the secondary phloem of these organs and also in the secondary xylem of the terminal branchlets and small roots. In a new growth cycle, the consumption of the previously accumulated vegetative storage proteins began in the terminal branchlets of the last growth cycle. The vegetative storage proteins in the branchlets were exhausted completely when the new shoot leaves matured, while the storage proteins in the trunk and large roots had no detectable changes in abundance. On the other hand, the tree started to accumulate the two proteins in the stem of the new shoots as early as I week after the new shoot leaves matured. These results suggested that the previously accumulated vegetative storage proteins were used for new shoot growth and cambial activity in preference to the newly assimilated nitrogen and that vegetative storage proteins existed in considerable amounts in the stems throughout an annual growth cycle. This seasonal fluctuating pattern of vegetative storage proteins in the whole tree may be an important mechanism by which the tree regulates its growth.

分类号:

  • 相关文献

[1]Fluctuation of vegetative storage proteins in the seedlings of Swietenia macrophylla, analogous to the seasonal changes of those in the shoot of the adult tree. Han, Ya-Qin,Yan, Xing-Fu,Zhang, Hua,Hu, Zheng-Hai,Hao, Bing-Zhong,Tian, Wei-Min. 2007

[2]Vegetative Storage Proteins in Meliaceae. Tian, WM,Wu, JL,Hao, BZ,Hu, ZH.

[3]Poplar trees (Populus canadensis Moench) initiate vegetative storage protein accumulation during new shoot development in spring. Tian, WM,Peng, SQ,Hao, BZ,Wu, JL,Hu, ZH,Cui, KM. 2005

[4]Distribution and ultrastructure of vegetative storage proteins in Leguminosae. Tian, WM,Hu, ZH. 2004

[5]Planting density and leaf-square regulation affected square size and number contributing to altered insecticidal protein content in Bt cotton. Yuan Chen,Chen, Dehua,Yabing Li,Yuan Chen,Eltayib H.M.A. Abidallha,Dapeng Hu,Yuan Li,Xiang Zhang,Dehua Chen.

[6]Nitrogen (N) Application Gradually Enhances Boll Development and Decreases Boll Shell Insecticidal Protein Content in N-Deficient Cotton. Yuan Chen,Chen, Dehua,Yabing Li,Mingyuan Zhou,Qiuzhi Rui,Zezhou Cai,Xiang Zhang,Yuan Chen,Dehua Chen. 2018

[7]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[8]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[9]Arabidopsis plastidial folylpolyglutamate synthetase is required for nitrogen metabolism under nitrate-limited condition in darkness. Meng, Hongyan,Xu, Bosi,Zhang, Chunyi,Jiang, Ling,Zhang, Chunyi,Jiang, Ling.

[10]ES7, encoding a ferredoxin-dependent glutamate synthase, functions in nitrogen metabolism and impacts leaf senescence in rice. Bi, Zhenzhen,Zhang, Yingxin,Wu, Weixun,Zhan, Xiaodeng,Yu, Ning,Xu, Tingting,Liu, Qunen,Li, Zhi,Shen, Xihong,Chen, Daibo,Cheng, Shihua,Cao, Liyong,Bi, Zhenzhen,Zhang, Yingxin,Wu, Weixun,Zhan, Xiaodeng,Yu, Ning,Xu, Tingting,Liu, Qunen,Li, Zhi,Shen, Xihong,Chen, Daibo,Cheng, Shihua,Cao, Liyong.

[11]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[12]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[13]Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Yang, Bo,Ma, Hai-Yan,Wang, Xiao-Mi,Jia, Yong,Hu, Jing,Dai, Chuan-Chao,Li, Xia.

[14]Growth performance and nitrogen metabolism in weaned pigs fed diets containing different sources of starch. Li, T. J.,Huang, R. L.,Wu, G. Y.,Lin, Y. C.,Jiang, Z. Y.,Kong, X. F.,Chu, W. Y.,Zhang, Y. M.,Kang, P.,Hou, Z. P.,Fan, M. Z.,Liao, Y. P.,Yin, Y. L.. 2007

[15]Calcium involved in the poly(gamma-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism. Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Xianju,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong. 2014

[16]Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultiva. Zhang, Qunfeng,Liu, Meiya,Ruan, Jianyun,Zhang, Qunfeng,Liu, Meiya,Ruan, Jianyun. 2017

[17]Food safety: Structure and expression of the asparagine synthetase gene family of wheat. Gao, Runhong,Xu, Hongwei,Huang, Jianhua,Gao, Runhong,Curtis, Tanya Y.,Xu, Hongwei,Halford, Nigel G.,Powers, Stephen J..

[18]Effects of exogenous ABA and cytokinin on leaf photosynthesis and grain protein accumulation in wheat ears cultured in vitro. Xie, ZJ,Jiang, D,Dai, TB,Jing, Q,Cao, WX. 2004

[19]Effects of root restriction on nitrogen and gene expression levels in nitrogen metabolism in Jumeigui grapevines (Vitis vinifera L.xVitis labrusca L). Li Jie-fa,Wang Bo,Wang Lei,Zhang Cai-xi,Xu Wen-ping,Wang Shi-ping,Zhu Li-na,Bai Yang. 2015

[20]Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). Wang, Huan,Shi, Decheng,Liu, Bao,Yang, Chunwu,Zhang, Meishan,Guo, Rui,Lin, Xiuyun. 2012

作者其他论文 更多>>