Root carbon consumption and grain yield of spring wheat in response to phosphorus supply under two water regimes

文献类型: 外文期刊

第一作者: Guan Yu

作者: Guan Yu;Guan Yu;Qiao Zhen;Du Yan-lei;Du Jiu-yuan

作者机构:

关键词: grain yield;phosphorus supply;root carbon consumption;spring wheat;water supply

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 7 期

页码:

收录情况: SCI

摘要: In semiarid areas, cereal crops often allocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80-75% and 50-45% field capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 mu g P g(-1) soil). At shooting and flowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50-45% FC and P3 under 80-75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80-75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80-75% of field water capacity and 44 mg P kg(-1) soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.

分类号:

  • 相关文献

[1]Simulation of long-term spring wheat yields, soil organic C, N and water dynamics using DSSAT-CSM in a semi-arid region of the Canadian prairies. Li, Zhuo Ting,Yang, J. Y.,Drury, C. F.,He, W. T.,Li, Zhuo Ting,Li, Xiao Gang,Smith, W. N.,Grant, B.,Lemke, R. L.,He, W. T..

[2]The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Lillemo, M.,Asalf, B.,Bjornstad, A.,Singh, R. P.,Huerta-Espino, J.,Chen, X. M.,He, Z. H..

[3]Proteomic analysis of leaves of different wheat genotypes subjected to PEG 6000 stress and rewatering. Ye, Jingxiu,Zhang, Fengjun,Xie, Deqing,Yao, Youhua,Wang, Shuping. 2013

[4]Morphological and yield responses of winter wheat (Triticum aestivum L.) to raised bed planting in Northern China. Wang, Fahong,Kong, Ling'an,Li, Shengdong,Si, Jisheng,Feng, Bo,Zhang, Bin,Wang, Fahong,Sayre, Ken. 2011

[5]Nitrogen Use Efficiency as Affected by Phosphorus and Potassium in Long-Term Rice and Wheat Experiments. He Xin-hua,Shi Xiao-jun,Li Shuang-lai,Sun Xi-fa,He Xin-hua. 2014

[6]Growth, yield and quality of wheat and cotton in relay strip intercropping systems. L.Zhang,L.Zhang,W.van der Werf. 2007

[7]Molecular mapping of quantitative trait loci for kernel morphology traits in a non-1BL.1RS x 1BL.1RS wheat cross. Yonggui Xiao,Shengmei He,Jun Yan,Yong Zhang,Yelun Zhang,Yunpeng Wu,Xianchun Xia,Jichun Tian,Wanquan Ji,Zhonghu He.

[8]EFFECTS OF NITROGEN APPLICATION ON BIOMASS ACCUMULATION, REMOBILIZATION, AND SOIL WATER CONTENTS IN A RAINFED WHEAT FIELD. Duan, Wenxue,Yu, Zhenwen,Zhang, Yongli,Wang, Dong,Shi, Yu,Duan, Wenxue,Xu, Zhenzhu. 2014

[9]Yield and yield component analysis of early-season rice in southern China. Mo, Hailing,Qin, Gang,Luo, Zhiyong,Zhang, Zongqiong,Chen, Caihong. 2013

[10]Candidate Loci for Yield-Related Traits in Maize Revealed by a Combination of MetaQTL Analysis and Regional Association Mapping. Chen, Lin,An, Yixin,Li, Yong-Xiang,Li, Chunhui,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Wang, Tianyu,Li, Yu. 2017

[11]Improving nitrogen fertilization in rice by site-specific N management. A review. Peng, Shaobing,Buresh, Roland J.,Dobermann, Achim,Huang, Jianliang,Cui, Kehui,Zhong, Xuhua,Zou, Yingbin,Tang, Qiyuan,Yang, Jianchang,Wang, Guanghuo,Liu, Yuanying,Hu, Ruifa,Zhang, Fusuo. 2010

[12]Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice. Ashraf, Umair,Kanu, Adam S.,Deng, Quanquan,Mo, Zhaowen,Pan, Shenggang,Tian, Hua,Tang, Xiangru,Ashraf, Umair,Kanu, Adam S.,Deng, Quanquan,Mo, Zhaowen,Pan, Shenggang,Tian, Hua,Tang, Xiangru. 2017

[13]NO-TILLAGE AND WIDE PLANT SPACING FOR HYBRID RICE PRODUCTION IN SOUTHWEST CHINA. . 2017

[14]Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management. Xue, Lihong,Yu, Yingliang,Yang, Linzhang. 2014

[15]Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China. Xu Fu-xian,Xiong Hong,Jiang Peng,Xie Xiao-bing,Huang Min,Zhou Xue-feng,Zhang Rui-chun,Chen Jia-na,Wu Dan-dan,Xia Bing,Zou Ying-bin,Zou Ying-bin. 2015

[16]Irrigation methods affect wheat flag leaf senescence and chlorophyll fluorescence in the North China Plain. Xu, J. K.,Shi, Y.,Yu, Z. W.,Zhao, J. Y.. 2017

[17]Characterizing N uptake and use efficiency in rice as influenced by environments. Xie, Xiaobing,Huang, Min,Zhou, Xuefeng,Zhang, Ruichun,Chen, Jiana,Wu, Dandan,Xia, Bing,Zou, Yingbin,Jiang, Peng,Xiong, Hong,Xu, Fuxian. 2016

[18]Relationship between yield, carbon isotope discrimination and stem carbohydrate concentration in spring wheat grown in Ningxia Irrigation Region (North-west China). Zhu, Lin,Xu, Xing,Zhu, Lin,Liang, Zong Suo,Zhu, Lin,Li, Shu Hua,Xu, Xing,Zhang, Zhan Feng. 2010

[19]Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. Qian, Chunrong,Yu, Yang,Gong, Xiujie,Jiang, Yubo,Zhao, Yang,Yang, Zhongliang,Hao, Yubo,Li, Liang,Song, Zhenwei,Zhang, Weijian. 2016

[20]Simultaneous Improvement and Genetic Dissection of Salt Tolerance of Rice (Oryza sativa L.) by Designed QTL Pyramiding. Pang, Yunlong,Wang, Xiaoqian,Wang, Wensheng,Xu, Jianlong,Li, Zhikang,Pang, Yunlong,Wang, Xiaoqian,Ali, Jauhar,Chen, Kai,Xu, Jianlong,Xu, Jianlong,Li, Zhikang. 2017

作者其他论文 更多>>