Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels

文献类型: 外文期刊

第一作者: Guan, Xuefang

作者: Guan, Xuefang;Xu, Qingxian;Zheng, Yi;Qian, Lei;Lin, Bin

作者机构:

关键词: Fermented milk;Lactobacillus plantarum;Cholesterol;Rat

期刊名称:BRAZILIAN JOURNAL OF MICROBIOLOGY ( 影响因子:2.476; 五年影响因子:3.391 )

ISSN: 1517-8382

年卷期: 2017 年 48 卷 4 期

页码:

收录情况: SCI

摘要: Objective: To screen for and characterize lactic acid bacteria strains with the ability to produce fermented milk and reduce cholesterol levels. Methods: The strains were isolated from traditional fermented milk in China. In vitro and in vivo evaluation of cholesterol-reduction were used to identify and verify strains of interest. Characteristics were analyzed using spectrophotometry and plate counting assays. Results: The isolate HLX37 consistently produced fermented milk with strong cholesterol reducing properties was identified as Lactobacillus plantarum (accession number: KR105940) and was thus selected for further study. The cholesterol reduction by strain HLX37 was 45.84%. The isolates were acid-tolerant at pH 2.5 and bile-tolerant at 0.5% (w/v) in simulated gastric juice (pH 2.5) for 2 h and in simulated intestinal fluid (pH 8.0) for 3 h. The auto aggregation rate increased to 87.74% after 24 h, while the co-aggregation with Escherichia coli DH5 was 27.76%. Strain HLX37 was intrinsically resistant to antibiotics such as penicillin, tobramycin, kanamycin, streptomycin, vancomycin and amikacin. Compared with rats in the model hyperlipidemia group, the total cholesterol content in the serum and the liver as well as the atherogenic index of rats in the viable fermented milk group significantly decreased by 23.33%, 32.37% and 40.23%, respectively. Fewer fat vacuoles and other lesions in liver tissue were present in both the inactivated and viable fermented milk groups compared to the model group. Conclusion: These studies indicate that strain HLX37 of L. plantarum demonstrates probiotic potential, potential for use as a candidate for commercial use for promoting health. (C) 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda.

分类号:

  • 相关文献

[1]Lactobacillus plantarum Enhanced IL-22 Production in Natural Killer (NK) Cells That Protect the Integrity of Intestinal Epithelial Cell Barrier Damaged by Enterotoxigenic Escherichia coli. Qiu, Yueqin,Jiang, Zongyong,Hu, Shenglan,Wang, Li,Ma, Xianyong,Yang, Xuefen,Qiu, Yueqin,Jiang, Zongyong,Hu, Shenglan,Wang, Li,Ma, Xianyong,Yang, Xuefen,Qiu, Yueqin,Jiang, Zongyong,Hu, Shenglan,Wang, Li,Ma, Xianyong,Yang, Xuefen,Qiu, Yueqin,Jiang, Zongyong,Hu, Shenglan,Wang, Li,Ma, Xianyong,Yang, Xuefen,Qiu, Yueqin,Jiang, Zongyong,Hu, Shenglan,Wang, Li,Ma, Xianyong,Yang, Xuefen. 2017

[2]Optimization of nitrite reductase production conditions in Lactobacillus plantarum from salted fish. Wang, Yanan,Wu, Yanyan,Yang, Xianqing,Li, Laihao,Qi, Bo. 2013

[3]Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions. Xia Xiudong,Wang Ying,Liu Xiaoli,Li Ying,Zhou Jianzhong. 2016

[4]Assessment of probiotic properties of Lactobacillus plantarum ZLP001 isolated from gastrointestinal tract of weaning pigs. Wang, Jing,Ji, Haifeng,Zhang, Dongyan,Liu, Hui,Wang, Sixin,Shan, Dacong,Wang, Yamin. 2011

[5]Ability of Lactobacillus plantarum lipoteichoic acid to inhibit Vibrio anguillarum-induced inflammation and apoptosis in silvery pomfret (Pampus argenteus) intestinal epithelial cells. Gao, Quanxin,Min, Minghua,Zhang, Chenjie,Peng, Shiming,Shi, Zhaohong,Gao, Qian.

[6]Potential Probiotic Characterization of Lactobacillus plantarum Strains Isolated from Inner Mongolia "Hurood" Cheese. Zhang, Jian,Yang, Zhennai,Zhang, Jian,Zhang, Xue,Zhang, Li,Zhao, Yujuan,Niu, Chunhua,Li, Shengyu,Yang, Zhennai.

[7]PRODUCTION OF CONJUGATED LINOLEIC ACID BY WHOLE-CELL OF LACTOBACILLUS PLANTARUM A6-1F. Zhao, Hong-wei,Lv, Jia-ping,Li, Shu-rong. 2011

[8]Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Yang, Zhennai,Li, Shengyu,Zhao, Yujuan,Zhang, Li,Zhang, Xue,Huang, Li,Li, Da,Niu, Chunhua,Yang, Zhennai,Zhang, Li,Yang, Zhennai,Wang, Qiang.

[9]Effects of lactobacillus plantarum ZJ316 on pig growth and pork quality. Yin, Yeshi,Wang, Xin,Suo, Cheng,Wang, Xiaona,Lou, Xiuyu,Song, Dafeng,Gu, Qing. 2012

[10]Ability of lactic acid bacteria isolated from mink to remove cholesterol: In vitro and in vivo studies. Liu, Hanlu,Yang, Chenjie,Jing, Yi,Li, Zhipeng,Zhong, Wei,Li, Guangyu.

[11]Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves. Zhang, R.,Zhou, M.,Tu, Y.,Zhang, N. F.,Ma, T.,Diao, Q. Y.,Deng, K. D..

[12]Antioxidant activity of prebiotic ginseng polysaccharides combined with potential probiotic Lactobacillus plantarum C88. He, Zhongmei,Wang, Xiaohui,Wang, Xiaohui,Zhao, Yujuan,Zhang, Jian,Niu, Chunhua,Li, Shengyu,Li, Guofeng,Ying, Dashi,Zhang, Li,Zhang, Xue.

[13]Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Zhang, Li,Li, Da,Zhao, Yujuan,Zhang, Xue,Zeng, Xianpeng,Yang, Zhennai,Li, Shengyu,Liu, Chunhong,Zhang, Li,Yang, Zhennai,Yang, Zhennai.

[14]Protective effects of Lactobacillus plantarum C88 on chronic ethanol-induced liver injury in mice. Zhao, Lei,Jiang, Yu,Ni, Yuxin,Zhang, Tianzhu,Duan, Cuicui,Huang, Cheng,Zhao, Yujuan,Gao, Lei,Li, Shengyu.

[15]Development of a SCAR (Sequence-characterised amplified region) marker for acid resistance-related gene in Lactobacillus plantarum. Liu, Shu-Wen,Yang, Shi-Ling,Li, Kai,Tian, Shu-Fen,He, Ling.

[16]Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Fontana, Carolina,Widmalm, Goran,Li, Shengyu,Yang, Zhennai.

[17]Prebiotic Potential of Xylooligosaccharides Derived from Corn Cobs and Their In Vitro Antioxidant Activity When Combined with Lactobacillus. Yu, Xiuhua,Yin, Jianyuan,Zhao, Chunfang,Yu, Xiuhua,Li, Lin,Luan, Chang,Zhang, Jian,Li, Shengyu.

[18]Excess dietary cholesterol may have an adverse effect on growth performance of early post-larval Litopenaeus vannamei. Niu, Jin,Lin, Hei-Zhao,Chen, Peng-Fei,Tian, Li-Xia,Liu, Yong-Jian,Yang, Hui-Jun,Liang, Gui-Ying. 2012

[19]Dietary values of astaxanthin and canthaxanthin in Penaeus monodon in the presence and absence of cholesterol supplementation: effect on growth, nutrient digestibility and tissue carotenoid composition. Niu, Jin,Li, Chun-Hou,Chen, Xu,Huang, Zhong,Lin, Hei-Zhao,Liu, Yong-Jian,Tian, Li-Xia. 2012

[20]Effects of dietary taurine on egg production, egg quality and cholesterol levels in Japanese quail. Wang, Fu-Rong,Zhang, Xiao-Ming,Tong, Jian-Ming,Xie, Zhong-Guo,Wang, Fu-Rong,Zhang, Xiao-Ming,Tong, Jian-Ming,Xie, Zhong-Guo,Wang, Fu-Rong,Dong, Xiao-Fang,Tong, Jian-Ming,Zhang, Qi. 2010

作者其他论文 更多>>