Identification of Candidate Anthocyanin-Related Genes by Transcriptomic Analysis of `Furongli' Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-Seq

文献类型: 外文期刊

第一作者: Fang, Zhi-Zhen

作者: Fang, Zhi-Zhen;Zhou, Dan-Rong;Ye, Xin-Fu;Jiang, Cui-Cui;Pan, Shao-Lin

作者机构:

关键词: transcriptome;Prunus salicina Lindl.;anthocyanin biosynthesis;fruit ripening;biosynthetic enzyme;transcription factor

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2016 年 7 卷

页码:

收录情况: SCI

摘要: Anthocyanins are important pigments and are responsible for red coloration in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits. In this study, the RNA-seq technique was used to analyze the transcriptomic changes during fruit ripening in the red-fleshed plum (Prunus salicina Lindl.) cultivar Furongli. Over 161 million high-quality reads were assembled into 52,093 unigenes and 49.4% of these were annotated using public databases. Of these, 25,681 unigenes had significant hits to the sequences in the NCBI Nr database, 17,203 unigenes showed significant similarity to known proteins in the Swiss-Prot database and 5816 and 8585 unigenes had significant similarity to existing sequences in the Kyoto Encyclopedia of Genes and Genomes and the Cluster of Orthologous Groups databases, respectively. A total of 3548 unigenes were differentially expressed during fruit ripening and 119 of these were annotated as involved in "biosynthesis of other secondary metabolites." Biological pathway analysis and gene ontology term enrichment analysis revealed that 13 differentially expressed genes are involved in anthocyanin biosynthesis. Furthermore, transcription factors such as MYB and bHLH, which may control anthocyanin biosynthesis, were identified through coexpression analysis of transcription factors, and structural genes. Real-time qPCR analysis of candidate genes showed good correlation with the transcriptome data. These results contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in plum flesh. The transcriptomic data generated in this study provide a basis for further studies of fruit ripening in plum.

分类号:

  • 相关文献

[1]Transcriptome Profiling of Light-Regulated Anthocyanin Biosynthesis in the Pericarp of Litch. Zhang, Hong-Na,Li, Wei-Cai,Shi, Sheng-You,Shu, Bo,Liu, Li-Qin,Wei, Yong-Zan,Xie, Jiang-Hui,Wang, Hui-Cong. 2016

[2]Spatiotemporal Transcriptome Analysis Provides Insights into Bicolor Tepal Development in Lilium "Tiny Padhye". Xu, Leifeng,Yang, Panpan,Feng, Yayan,Xu, Hua,Cao, Yuwei,Tang, Yuchao,Yuan, Suxia,Liu, Xinyan,Ming, Jun,Yang, Panpan. 2017

[3]Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis. Peng, Zhen,Cao, Moju,Xu, Jie,Lu, Yanli,Peng, Zhen,He, Shoupu,Gong, Wenfang,Sun, Junling,Pan, Zhaoe,Du, Xiongming,Sun, Gaofei.

[4]Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker. Xianwen Zhang ,Zhenwei Ye,TiankangWang,Hairong Xiong,Xiaoling Yuan,Zhigang Zhang,Youlu Yuan,Zhi Liu.

[5]De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Li, Jin,Liu, Hailiang,Xia, Wenwen,Mu, Jianqiang,Feng, Yujie,Liu, Ruina,Wang, Aiying,Lin, Zhongping,Zhu, Jianbo,Chen, Xianfeng,Liu, Hailiang,Yan, Panyao,Chen, Xianfeng,Lin, Zhongping,Guo, Yong. 2017

[6]Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators. Cheng, Guo,Li, Qiang,Wang, Yu,Lan, Yi-Bin,Li, Si-Yu,Zhu, Yan-Rong,Song, Wen-Feng,Zhang, Xue,Cui, Xiao-Di,Wang, Jun,Wang, Yu,Lan, Yi-Bin,Li, Si-Yu,Wang, Jun,He, Yan-Nan,Chen, Wu,Sun, Run-Ze,Sun, Run-Ze,Cheng, Guo,Li, Qiang. 2017

[7]Transcriptomic Analysis of Seed Coats in Yellow-Seeded Brassica napus Reveals Novel Genes That Influence Proanthocyanidin Biosynthesis. Hong, Meiyan,Hu, Kaining,Tian, Tiantian,Li, Xia,Chen, Li,Zhang, Yan,Yi, Bin,Wen, Jing,Ma, Chaozhi,Shen, Jinxiong,Fu, Tingdong,Tu, Jinxing,Li, Xia,Chen, Li,Zhang, Yan. 2017

[8]Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa. Zhang, Yu,Peng, Lifang,Wu, Ya,Shen, Yanyue,Wang, Jianbo,Wu, Xiaoming.

[9]Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. Duan, Cuifang,Argout, Xavier,Gebelin, Virginie,Summo, Marilyne,Dufayard, Jean-Francois,Leclercq, Julie,Piyatrakul, Piyanuch,Pirrello, Julien,Rio, Maryannick,Montoro, Pascal,Duan, Cuifang,Kuswanhadi,Piyatrakul, Piyanuch,Champion, Antony. 2013

[10]Extraction optimization of polyphenols, antioxidant and xanthine oxidase inhibitory activities from Prunus salicina Lindl.. Li, Yibin,Lai, Pufu,Chen, Junchen,Shen, Hengsheng,Tang, Baosha,Wu, Li,Weng, Minjie. 2016

[11]Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing. Sun, Yuyan,Qiu, Yang,Duan, Mengmeng,Wang, Jinglei,Zhang, Xiaohui,Wang, Haiping,Song, Jiangping,Li, Xixiang,Sun, Yuyan.

[12]The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. An, Xiu-Hong,Tian, Yi,Chen, Ke-Qin,Wang, Xiao-Fei,Hao, Yu-Jin,An, Xiu-Hong,Tian, Yi,Chen, Ke-Qin,Wang, Xiao-Fei,Hao, Yu-Jin,An, Xiu-Hong,Tian, Yi,Chen, Ke-Qin,Wang, Xiao-Fei,Hao, Yu-Jin,Tian, Yi. 2012

[13]Anthocyanin Biosynthesis Regulation in the Fruit of Citrus sinensis cv. Tarocco. Liu, Jian-jun,Chen, Ke-ling,Li, Hong-wen,He, Jian,Guan, Bin,He, Li,Wang, Jian-hui,Liu, Jian-jun,Chen, Ke-ling,Li, Hong-wen,He, Jian,Guan, Bin,He, Li,Wang, Jian-hui,Liu, Jian-jun,Chen, Ke-ling,Li, Hong-wen,He, Jian,Guan, Bin,He, Li.

[14]Accumulation and Molecular Regulation of Anthocyanin in Purple Tumorous Stem Mustard (Brassica juncea var. tumida Tsen et Lee). Xie, Qiaoli,Hu, Zongli,Zhang, Yanjie,Zhao, Zhiping,Chen, Guoping,Tian, Shibing,Wang, Zhijin,Yang, Yang.

[15]Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Hong, B,Zhang, ZF,Tang, SM,Yi, YZ,Zhang, TY,Xu, WH.

[16]A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Guo, Jun-E,Hu, Zongli,Yu, Xiaohui,Li, Anzhou,Li, Fenfen,Wang, Yunshu,Chen, Guoping,Tian, Shibing. 2018

[17]Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. Kuang, Jian-fei,Chen, Lei,Xie, Hui,Peng, Huan-huan,Xiao, Yun-yi,Li, Xue-ping,Chen, Wei-xin,Chen, Jian-ye,Lu, Wang-jin,He, Quan-guang. 2012

[18]Over-expression of GhDWF4 gene improved tomato fruit quality and accelerated fruit ripening. Ye Shu-e,Li Fang,Li Xian-bi,Zhai Yun-lan,Hu Ming-yu,Wei Ting,Deng Sha-sha,Pei Yan,Luo Ming,Hong Qi-bin. 2015

[19]Functional analysis of differentially expressed proteins in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits during ripening. Chen, Yi-Yong,Zhong, Can-Yu,Song, Xiao-Min,Huang, Chun-Mei,Huang, Rong-Hui,Chen, Wei,Zhang, Ze-Huang,Lin, Qi-Hua,Chen, Yi-Yong,Chen, Wei. 2016

[20]Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. Bi, Fangcheng,Meng, Xiangchun,Yi, Ganjun,Bi, Fangcheng,Meng, Xiangchun,Yi, Ganjun,Bi, Fangcheng,Meng, Xiangchun,Yi, Ganjun,Ma, Chao. 2015

作者其他论文 更多>>