Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid and Their Potential in Alleviating Drought Stress

文献类型: 外文期刊

第一作者: Niu, Xuguang

作者: Niu, Xuguang;Song, Lichao;Xiao, Yinong;Niu, Xuguang;Song, Lichao;Xiao, Yinong;Ge, Weide

作者机构:

关键词: 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase;plant growth-promoting rhizobacteria (PGPR);foxtail millet (Setaria italica L.);drought stress;semi-arid region

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.64; 五年影响因子:6.32 )

ISSN: 1664-302X

年卷期: 2018 年 8 卷

页码:

收录情况: SCI

摘要: The application of plant growth promoting rhizobacteria (PGPR) to agro-ecosystems is considered to have the potential for improving plant growth in extreme environments featured by water shortage. Herein, we isolated bacterial strains from foxtail millet (Setaria italica L.), a drought-tolerant crop cultivated in semiarid regions in the northeast of China. Four isolates were initially selected for their ability to produce ACC deaminase as well as drought tolerance. The isolates were identified as Pseudomonas fluorescens, Enterobacter hormaechei, and Pseudomonas migulae on the basis of 16S rRNA sequence analysis. All of these drought-tolerant isolates were able to produce EPS (exopolysaccharide). Inoculation with these strains stimulated seed germination and seedling growth under drought stress. Pseudomonas fluorescens DR7 showed the highest level of ACC deaminase and EPS-producing activity. DR7 could efficiently colonize the root adhering soil, increased soil moisture, and enhance the root adhering soil/root tissue ratio. These results suggest drought tolerant PGPR from foxtail millet could enhance plant growth under drought stress conditions and serve as effective bioinoculants to sustain agricultural production in arid regions.

分类号:

  • 相关文献

[1]A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. Fang, Xiaomei,Wang, Xiaoqin,Liu, Rui,Liu, Xueying,Li, Man,Huang, Mengzhu,Zhang, Zhengsheng,Dong, Kongjun,Liu, Tianpeng,He, Jihong,Ren, Ruiyu,Zhang, Lei,Yang, Tianyu. 2016

[2]Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. Changsong Zou,Zhifang Li,Diqiu Yu.

[3]Induction of resistance in cucumber against seedling damping-off by plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium strain L8. Liang, Jian-gen,Tao, Rong-xiang,Hao, Zhong-na,Wang, Lian-ping,Zhang, Xin. 2011

[4]Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil. Xu, Sheng Jun,Kim, Joon-Young,Kim, Byung-Sup,Xu, Sheng Jun,Park, Duck Hwan.

[5]Monitoring land use dynamics for ecological degradation assessment in the rim zone of North China using MODIS and Land TM data. Qin, ZH,Xu, B,Liu, J,Li, WJ,Zhang, WC,Zhang, HO. 2004

[6]Maize straw effects on soil aggregation and other properties in arid land. Wang, Xiaojuan,Jia, Zhikuan,Yang, Baoping,Ding, Ruixia,Nie, Junfen,Wang, Junpeng,Wang, Xiaojuan,Jia, Zhikuan,Yang, Baoping,Ding, Ruixia,Nie, Junfen,Wang, Junpeng,Liang, Lianyou.

[7]Development of artificial moss-dominated biological soil crusts and their effects on runoff and soil water content in a semi-arid environment. Xiao, Bo,Wang, Qinghai,Li, Cui,Xiao, Bo,Zhao, Yunge.

[8]Soil organic and inorganic carbon in the loess profiles of Lanzhou area: implications of deep soils. Zhang, Fang,Wang, Xiujun,Wang, Xiujun,Guo, Tianwen,Zhang, Pingliang,Wang, Jiaping.

[9]Legacy effects from historical grazing enhanced carbon sequestration in a desert steppe. Han, Juanjuan,Shao, Changliang,Li, Linghao,Chen, Jiquan,Shao, Changliang,Chen, Jiquan,Han, Guodong,Sun, Hailian.

[10]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[11]Single-base resolution methylomes of upland cotton (Gossypium hirsutum L.) reveal epigenome modifications in response to drought stress. Xuke Lu,Ye, Wuwei,Xiaoge Wang,Xiugui Chen,Na Shu,Junjuan Wang,Delong Wang,Shuai Wang,Weili Fan,Lixue Guo,Xiaoning Guo,Wuwei Ye. 2017

[12]An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Pan, Yu,Hu, Zongli,Chen, Guoping,Pan, Yu,Seymour, Graham B.,Lu, Chungui,Chen, Xuqing. 2012

[13]Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide. Chen, Zhang,Wang, Ruixin,Han, Pengyuan,Sun, Hailong,Sun, Haifeng,Li, Chengjun,Yang, Lixia. 2018

[14]Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. Liu, Qiaohong,Liu, Zhibin,Yang, Hao,Wang, Jianmei,Li, Xufeng,Yang, Yi,Yang, Liang. 2016

[15]Reference genes for quantitative real-time PCR analysis and quantitative expression of P5CS in Agropyron mongolicum under drought stress. Tian Qing-song,Du Jian-cai,Han Bing,Wang Shu-yan,Wu Zhi-juan,Li Xiao-quan,Han Bing. 2016

[16]Exogenously Applied Nitric Oxide Enhances the Drought Tolerance in Hulless Barley. Zhong, Yan,Wu, Xiaoli. 2015

[17]RdreB1BI enhances drought tolerance by activating AQP-related genes in transgenic strawberry. Gu, Xianbin,Gao, Zhihong,Yan, Yichao,Qiao, Yushan,Gu, Xianbin,Chen, Yahua,Wang, Xiuyun,Gu, Xianbin. 2017

[18]Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Jin, Rong,Kim, Beg Hab,Ji, Chang Yoon,Kim, Ho Soo,Kwak, Sang-Soo,Jin, Rong,Ji, Chang Yoon,Kwak, Sang-Soo,Jin, Rong,Kim, Ho Soo,Ma, Dai Fu. 2017

[19]Effects of Exogenous Chitosan on Physiological Characteristics of Potato Seedlings Under Drought Stress and Rehydration. Jiao, Zhili,Li, Yong,Lu, Dianqiu,Li, Juanjuan,Xu, Xiaoyan,Wang, Jingying,Li, Hui. 2012

[20]VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Liu, Guanshan,Chen, Jia,Wang, Xuechen. 2006

作者其他论文 更多>>