Environmental impacts of pepper (Capsicum annuum L) production affected by nutrient management: A case study in southwest China

文献类型: 外文期刊

第一作者: Wang, Xiaozhong

作者: Wang, Xiaozhong;Zou, Chunqin;Fan, Shanshan;Liu, Yumin;Du, Yunfei;Zhao, Qingyue;Chen, Xinping;Zhang, Yueqiang;Shi, Xiaojun;Chen, Xinping;Wang, Xiaozhong;Zhang, Yueqiang;Shi, Xiaojun;Chen, Xinping;Liu, Jizhen;Tan, Yangguo;Wu, Chaolong

作者机构:

关键词: Nutrient management;Global warming;Eutrophication;Acidification;Energy depletion

期刊名称:JOURNAL OF CLEANER PRODUCTION ( 影响因子:9.7; 五年影响因子:10.2 )

ISSN: 0959-6526

年卷期: 2018 年 171 卷

页码:

收录情况: SCI

摘要: Intensive vegetable production can cause considerable environmental risks, but quantitative evaluation for a regional/crop specific system and further establishment of best management practices to reduce the environmental risks, are still lacking. In this study, based on 160 farmer survey data, we used life cycle assessment to quantify the global warming, eutrophication, acidification and energy depletion potentials for pepper production in southwest China, and further to identify the key measures to reduce the environmental impacts by evaluating the effects of various nutrient management practices among farmers. Results showed that the mean total global warming, eutrophication, acidification, and energy depletion potentials of the 160 farmer fields were 368 kg CO2-eq t(-1), 1.52 kg PO4-eq t(-1), 7.93 kg SO2-eq t(-1), and 184 kg MJ t(-1), respectively, being 2.0, 23, 5.5 and 0.69 times greater than the corresponding mean values for other vegetable crops in different areas of the world. Based on differences in pepper yield and nitrogen use efficiency, the 160 fields were categorized into 4 groups showing significant differences in various environmental impacts. The global warming, eutrophication, acidification, and energy depletion potentials in the high yield and high nitrogen use efficiency (HH) group were 37.3, 34.4, 33.9, and 35.5%, respectively, lower than the average of all 160 farmers' fields. Further analysis showed that the reduction in environmental risks for the HH group were mainly accounted for by lower application rates of N and P fertilizer by 6.94% and 12.2%, higher application rates of K fertilizer by 11.9%, and higher yield by 34.8%, respectively. This study highlights the importance of optimizing nutrient management in vegetable production based on farmers' practice, which could achieve more yield with less environmental impacts, and thereby avoid the "trade-off" effect between productivity and environmental sustainability. (C) 2017 Elsevier Ltd. All rights reserved.

分类号:

  • 相关文献

[1]Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Liu, Huichang,Liu, Ying,Qu, Guorun,Zhang, Dabing,Quan, Sheng,Shi, Jianxin,Cui, Bo,Xu, Yi,Hu, Chaoyang,Li, Dawei,Wu, Yongning.

[2]Evaluation of a New Nutrient Management Method in Green House Gas Emission Reduction for Winter Wheat in the North China Plain. Sun, Yan-ming,Jia, Liang-liang,Han, Bao-wen,Liu, Meng-chao. 2014

[3]Decision System for Recommended Fertilization and Nutrient Management in Farmland. Liu, Yunlong,Jiang, Lina. 2012

[4]Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: II nutrient balances and soil fertility. Wang, Xiaobin,Hoogmoed, Willem B.,Cai, Dianxiong,Perdok, Udo D.,Oenema, Oene. 2007

[5]Phosphorus source coefficient determination for quantifying phosphorus loss risk of various animal manures. Wang, Y. T.,Zhang, T. Q.,Tan, C. S.,Hu, Q. C..

[6]Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I grain yields and nutrient use efficiencies. Wang, Xiaobin,Cai, Dianxiong,Hoogmoed, Willem B.,Perdok, Udo D.,Oenema, Oene. 2007

[7]Optimal soil-sampling design for rubber tree management based on fuzzy clustering. Lin, Qinghuo,Li, Baoguo,Lin, Qinghuo,Luo, Wei,Lin, Zhaomu,Li, Hong,Li, Hong. 2013

[8]Dung and farm dairy effluent affect urine patch nitrous oxide emissions from a pasture. Shi, Y.,Wang, L.,Li, J.,Luo, J.,Ledgard, S.,Houlbrooke, D.,Lindsey, S.,Li, Y.,Bo, L.,Ma, Y..

[9]Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices. Hua, Lingling,Zhai, Limei,Wang, Hongyuan,Liu, Hongbin,Liu, Jian,Xi, Bin,Zhang, Fulin,Chen, Anqiang,Fu, Bin.

[10]Effects of Soil pH on CO2 Emission from Long-Term Fertilized Black Soils in Northeastern China. Wang, Lianfeng,Han, Zuoqiang,Zhang, Xilin,Wang, Lianfeng. 2010

[11]Positive feedback between acidification and organic phosphate mineralization in the rhizosphere of maize (Zea mays L.). Ding, Xiaodong,Fu, Li,Liu, Chenjia,Chen, Fanjun,Shen, Jianbo,Zhang, Fusuo,Feng, Gu,Ding, Xiaodong,Fu, Li,Liu, Chenjia,Chen, Fanjun,Shen, Jianbo,Zhang, Fusuo,Feng, Gu,Ding, Xiaodong,Hoffland, Ellis. 2011

[12]The Influence of Phosphorus Sources on the Growth and Rhizosphere Soil Characteristics of Two Genotypes of Wheat (Triticum aestivum L.). Zhan, Xiaoying,Hou, Yanyan,Zhang, Shuxiang,Liu, Wenke.

[13]Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Yangtze River Delta, China. Liang, L. Z.,Zhao, X. Q.,Yi, X. Y.,Chen, Z. C.,Dong, X. Y.,Chen, R. F.,Shen, R. F.,Yi, X. Y.. 2013

[14]Research on the degradation of tropical arable land soil: Part I the soil acidification during the last two decades in Hainan, China. Wang, Dengfeng,Wei, Zhiyuan,Qi, Zhiping. 2013

[15]Quantification of Anthropogenic Acidification Under Long-term Fertilization in the Upland Red Soil of South China. Meng, Hongqi,Xu, Minggang,He, Xin Hua,Wang, Boren,Cai, Zejiang,Meng, Hongqi,Meng, Hongqi,Lv, Jialong,He, Xin Hua.

[16]Impact of seasalt deposition on acid soils in maritime regions. Zhang, ZH.

[17]Will elevated CO2 enhance mineral bioavailability in wetland ecosystems? Evidence from a rice ecosystem. Zhang, Weijian,Guo, Jia,Guo, Jia,Zhang, Weijian,Zhang, Mingqian,Zhang, Li,Bian, Xinmin.

[18]Influence of rice cultivation on the abundance and fractionation of Fe, Mn, Zn, Cu, and Al in acid sulfate paddy soils in the Pearl River Delta. Tang, Shuanhu.

[19]Response of the Growth of Vallisneria natans Under High Zn2+ Stress and Different NH4+/NO3- Ratios. Wang, Baozhong,Zhou, Lihua,Li, Susu,Wang, Baozhong,Zhang, Xia,Luo, Yanqing. 2015

[20]Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. He, Peimin,Xu, Shannan,Zhang, Hanye,Wen, Shanshan,Dai, Yonjing,Zhang, Hanye,Lin, Senjie,Yarish, Charles. 2008

作者其他论文 更多>>