Farmland parcel boundary extraction based on local feature extraction and sparse representation from remote sensing images
文献类型: 外文期刊
第一作者: Zheng, Mingxue
作者: Zheng, Mingxue;Chen, Pingting;Shen, Xiangcheng;Luo, Hongmei;Luo, Zhiqing;Ma, Hairong;Zheng, Mingxue;Huang, Fenghua;Zheng, Mingxue;Zheng, Mingxue;Luo, Hongmei;Huang, Fenghua
作者机构:
关键词: Feature extraction; sparse representation; farmland parcel boundary extraction; remote sensing images; agricultural application
期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSING ( 影响因子:3.4; 五年影响因子:3.6 )
ISSN: 0143-1161
年卷期: 2024 年 45 卷 7 期
页码:
收录情况: SCI
摘要: Accurate information on agricultural field boundaries is important for precision agriculture. Contour detection combining local cues presents a high performance on nature images. Image sparse representation describes an image is reconstructed by using as few basic functions as possible. The number of farmland parcel boundaries is small and unbalanced for the whole agricultural fields. It fits the application category of sparse representation. In this research, we investigate an approach based on contour detection and sparse representation for the extraction of farmland parcel boundaries. First, field boundaries have an obvious brightness contrast with the internal parts of the farmland parcels. We capture the cue to describe per pixel. Then, we use efficient sparse coding algorithm to represent every pixel for boundary determination. Experimental results show that the proposed method achieves a sensitivity, specificity, accuracy, ${F_1}$F1and AUC of 0.6089, 0.9055, 0.8865, 0.4073 and 0.7552, respectively. The purpose of this paper is to demonstrate the potential of combining local features with sparse representation for a fast and accurate farmland parcel boundary extraction approach from remote sensing images. Comparison results with existing methods on two datasets demonstrate that the proposed method is able for accurate discrimination of the farmland parcel boundaries.
分类号:
- 相关文献
作者其他论文 更多>>
-
Effects of bio-nano-selenium on wheat grain morphology, selenium transport enrichment and antioxidant enzyme activities
作者:Huang, Sisi;Luo, Hongmei;Yu, Kan;Han, Yali;Song, Ruilian;Wang, Xiaofang;Zhou, Yu;Ren, Xifeng
关键词:bio-nano-selenium; wheat; physiological indicators; grain morphology; agronomic traits
-
A multi-scale remote sensing semantic segmentation model with boundary enhancement based on UNetFormer
作者:Wang, Jiangqing;Chen, Ting;Zheng, Lu;Tie, Jun;Zhang, Yibo;Song, Quanjie;Wang, Jiangqing;Chen, Ting;Song, Quanjie;Zheng, Lu;Tie, Jun;Zhang, Yibo;Chen, Pinting;Luo, Zhiqing
关键词:
-
MT-SiamNet: A Multi-Scale Attention Network for Reducing Missed Detections in Farmland Change Detection
作者:Wang, Jiangqing;Tian, Juanjuan;Zheng, Lu;Xie, Jin;Xia, Meng;Li, Shuangyang;Wang, Jiangqing;Tian, Juanjuan;Zheng, Lu;Xie, Jin;Xia, Meng;Li, Shuangyang;Chen, Pingting
关键词:CNN; Transformer; farmland change detection; remote sensing
-
Asproinocybe hongyaniae sp. nov. (Agaricales, Basidiomycota) in Thailand
作者:Lv, Tong;Wang, Shuai;Wu, Xiaoqu;Chen, Dechao;Luo, Hongmei;Li, Erxian;Tang, Songming;Li, Shuhong;Lv, Tong;Wang, Shuai;Wu, Xiaoqu;Chen, Dechao;Ao, Chengce;Ao, Chengce
关键词:ITS; nrLSU; new taxa; phylogenetic analysis; taxonomy
-
Asproinocybe hongyaniae sp. nov. (Agaricales, Basidiomycota) in Thailand
作者:Lv, Tong;Wang, Shuai;Wu, Xiaoqu;Chen, Dechao;Luo, Hongmei;Li, Erxian;Tang, Songming;Li, Shuhong;Lv, Tong;Wang, Shuai;Wu, Xiaoqu;Chen, Dechao;Ao, Chengce;Ao, Chengce
关键词:ITS; nrLSU; new taxa; phylogenetic analysis; taxonomy
-
A Lightweight Cotton Field Weed Detection Model Enhanced with EfficientNet and Attention Mechanisms
作者:Zheng, Lu;Long, Lyujia;Zhu, Chengao;Tie, Jun;Zheng, Lu;Long, Lyujia;Zhu, Chengao;Tie, Jun;Jia, Mengmeng;Chen, Pingting
关键词:cotton weed; EfficientNet; TensorRT; intelligent weeding
-
Hericium yunnanense ( Hericiaceae , Russulales), ), a new edible mushroom from Yunnan, China
作者:Wang, Shuai;Zhao, Long;Chen, Dechao;Li, Shuhong;Wang, Shuai;Zhao, Long;Chen, Dechao;Luo, Hongmei;Li, Exian;Li, Shuhong;Tang, Songming
关键词:Hericiaceae; morphology; novel species; taxonomy