Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature

文献类型: 外文期刊

第一作者: Gu, Yingnan

作者: Gu, Yingnan;He, Lin;Zhao, Changjiang;Wang, Feng;Yan, Bowei;Gao, Yuqiao;Li, Zuotong;Yang, Kejun;Xu, Jingyu;Gu, Yingnan

作者机构:

关键词: lipid metabolism;lipidome profiling;RNA-Seq;low temperature;maize

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Membrane lipid modulation is one of the major strategies plants have developed for cold acclimation. In this study, a combined lipidomic and transcriptomic analysis was conducted, and the changes in glycerolipids contents and species, and transcriptional regulation of lipid metabolism in maize leaves under low temperature treatment (5 degrees C) were investigated. The lipidomic analysis showed an increase in the phospholipid phosphatidic acid (PA) and a decrease in phosphatidylcholine (PC). And an increase in digalactosyldiacylglycerol and a decrease in monogalactosyldiacylglycerol of the galactolipid class. The results implied an enhanced turnover of PC to PA to serve as precursors for galactolipid synthesis under following low temperature treatment. The analysis of changes in abundance of various lipid molecular species suggested major alterations of different pathways of plastidic lipids synthesis in maize under cold treatment. The synchronous transcriptomic analysis revealed that genes involved in phospholipid and galactolipid synthesis pathways were significantly up-regulated, and a comprehensive gene-metabolite network was generated illustrating activated membrane lipids adjustment in maize leaves following cold treatment. This study will help to understand the regulation of glycerolipids metabolism at both biochemical and molecular biological levels in 18:3 plants and to decipher the roles played by lipid remodeling in cold response in major field crop maize.

分类号:

  • 相关文献

[1]QTL Mapping in Three Connected Populations Reveals a Set of Consensus Genomic Regions for Low Temperature Germination Ability in Zea mays L.. Li, Xuhui,Wang, Guihua,Li, Li,Jia, Guangyao,Ren, Lisha,Wang, Jianhua,Gu, Riliang,Fu, Junjie,Wang, Guoying,Lubberstedt, Thomas. 2018

[2]Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize. Li, Zhao,Hu, Guanghui,Liu, Xiangfeng,Zhou, Yao,Zhang, Qian,Yang, Deguang,Zhang, Zhiwu,Li, Zhao,Hu, Guanghui,Zhang, Xu,Yuan, Xiaohui,Zhang, Zhiwu,Hu, Guanghui,Wang, Tianyu,Yuan, Xiaohui. 2016

[3]Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height. Wu, Lei,Xue, Ming,Qian, Jianjun,He, Yan,Wang, Shoucai,Zhang, Dengfeng. 2014

[4]Natural variation reveals that OsSAP16 controls low-temperature germination in rice. Wang, Xiang,Zou, Baohong,Shao, Qiaolin,Cui, Yongmei,Lu, Shan,Zhang, Yan,Huang, Ji,Hua, Jian,Huang, Quansheng,Hua, Jian. 2018

[5]Cloning of 9-cis-epoxycarotenoid dioxygenase gene (TaNCED1) from wheat and its heterologous expression in tobacco. Zhang, S. J.,Song, G. Q.,Li, Y. L.,Gao, J.,Liu, J. J.,Fan, Q. Q.,Huang, C. Y.,Sui, X. X.,Chu, X. S.,Guo, D.,Li, G. Y.. 2014

[6]Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Chen, Jianlin,Wu, Xuexia,Zhu, Zongwen,Xu, Shuang,Zha, Dingshi,Wu, Xuexia,Zhu, Zongwen,Xu, Shuang,Zha, Dingshi,Yao, Xinfeng. 2016

[7]Molecular characterization of the soybean L-asparaginase gene induced by low temperature stress. Cho, Chang-Woo,Lee, Hye-Jeong,Chung, Eunsook,Kim, Kyoung Mi,Kim, Jee Eun Heo Jung-In,Chung, Jongil,Ma, Youzhi,Fukui, Kiichi,Lee, Dae-Won,Kim, Doh-Hoon,Chung, Young-Soo,Lee, Jai-Heou. 2007

[8]Bioaugmentation for biomass production at low temperature using enriched psychroactive methanogenic consortia. Cheng, Lei,Deng, Yu,Qiu, Tianlei,Sun, Xiaohong,Wang, Xuming,Han, Meilin,Cheng, Lei,Deng, Yu. 2011

[9]Transcriptome analysis of dormant tomonts of the marine fish ectoparasitic ciliate Cryptocaryon irritans under low temperature. Yin, Fei,Sun, Peng,Gao, Quanxin,Wang, Jiteng. 2016

[10]Screening and identification of microsatellite markers associated with cold tolerance in Nile tilapia Oreochromis niloticus. Zhu, H. P.,Liu, Z. G.,Lu, M. X.,Gao, F. Y.,Ke, X. L.,Huang, Z. H.. 2015

[11]Metabolic changes of peanut (Arachis hypogaea L.) buds in response to low temperature (LT). Wang, X. J.,Sun, D. L.,Bian, N. F.,Zhang, Z. M.,Wang, X.,Xu, Z. J.,Qi, Y. J.,Shen, Y..

[12]Expression Analysis of Low Temperature Responsive Genes in Eupatorium Adenophorum Spreng Using cDNA-AFLP. Wang, Junying,Zhang, Haiwen,Huang, Rongfeng.

[13]Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Ma, Jun,Zou, Zhirong,Ma, Jun,Li, Yansu,Yu, Xianchang,Yan, Yan,He, Chaoxing,Janouskova, Martina.

[14]ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Xu, Dong-Bei,Li, Xue-Yin,Chen, Yao-Feng,Gao, Shi-Qing,Ma, You-Zhi,Xu, Zhao-Shi,Li, Lian-Cheng,Chen, Ming,Gao, Shi-Qing,Zhao, Chang-Ping,Tang, Yi-Miao,Li, Xue-Yin.

[15]A novel method for contributing to composting start-up at low temperature by inoculating cold-adapted microbial consortium. Xie, Xin-Yu,Zhao, Yue,Sun, Qing-Hong,Wang, Xue-Qin,Cui, Hong-Yang,Zhang, Xu,Wei, Zi-Min,Li, Yan-Jie.

[16]Isolation and functional characterization of the ShCBF1 gene encoding a CRT/DRE-binding factor from the wild tomato species Solanum habrochaites. Li, Zhenjun,Li, Jingfu,Xu, Xiangyang,Wang, Aoxue,Li, Zhenjun,Zhang, Lili,Wang, Aoxue,Zhang, Lili,Wang, Aoxue,Yao, Quanhong.

[17]A simple and sensitive electrochemical sensor for new neonicotinoid insecticide Paichongding in grain samples based on beta-cyclodextrin-graphene modified glassy carbon electrode. Zhang, M.,Zhao, H. T.,Yang, X.,Dong, A. J.,Zhang, H.,Wang, J.,Liu, G. Y.,Zhai, X. C.,Zhang, M.,Wang, J..

[18]Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. Zhang, Y. -J.,Yang, J. -S.,Meng, J. -J.,Zhang, Y. -L.,Li, X. -G.,Zhang, Y. -J.,Yang, J. -S.,Meng, J. -J.,Zhang, Y. -L.,Li, X. -G.,Zhang, Y. -J.,Yang, J. -S.,Meng, J. -J.,Zhang, Y. -L.,Wan, S. -B.,He, Q. -W.,Li, X. -G.,Zhang, Y. -J.,Guo, S. -J..

[19]Novel zero-valent iron-assembled reactor for strengthening anammox performance under low temperature. Ren, Long-Fei,Lv, Lu,Zhang, Jian,Gao, Baoyu,Ni, Shou-Qing,Yang, Ning,Ren, Long-Fei,Zhou, Qingxin,Liu, Xiaoyong.

[20]Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity. Liu, Airong,Chen, Shuangchen,Chang, Rui,Chen, Haoran,Ahammed, Golam Jalal,Lin, Xiaomin,Chen, Shuangchen,Liu, Dilin,He, Chaoxing. 2014

作者其他论文 更多>>