Study on Biochar Properties Analysis with Scanning Electron Microscope-EnergyDispersive X-Ray Spectroscopy (SEM-EDX)

文献类型: 外文期刊

第一作者: Ma Xing-zhu

作者: Ma Xing-zhu;Hao Xiao-yu;Ma Xing-zhu;Hao Xiao-yu;Chen Xue-li;Gao Zhong-chao;Wei Dan;Zhou Bao-ku

作者机构:

关键词: Scanning electron microscope;Energy dispersive;Biochar;Maximum carbon content;Average carbon content

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2016 年 36 卷 6 期

页码:

收录情况: SCI

摘要: Scanning Electron Microscope-Energy Dispersive X-ray spectroscopy (SEM-EDX) was applied to analyze the chemical and structural properties of biochars produced under different temperatures. Results showed that average carbon content (SEM C aver.) and maximum carbon eontent (SEM C max) of miscanthus (MS) biochar increased as temperature increasing. There were significant and positive relationships between SEM C max., SEM C aver. and highest treatment temperature (HTT) (r were 0. 76 and 0. 86). SEM C max., SEM C aver. and dry combustion total carbon content had significant and positive relationships Cr were 0. 83 and 0. 91), SEM C max. which was better than SEM C aver. So the carbon content of MS biochar which had good correlationship with temperature analyzed by SEM-EDX, SEM C max. could be used for composition analysis of biochar, scanning results could analyze structural properties of biochar effectively. This method is rapid, simple and stable. It also could analyze structure and composition of biochar simultaneously. It is a promising method that would be useful to study the structure and composition of biochar and other materials.

分类号:

  • 相关文献

[1]Studies on the Characters and Microstructure of Enzyme and Octenyl Succinic Anhydride Modified Starch. Zheng Wei-wan,Tu Zong Cai,Lin Hong-hui,Kong Ling Wei,Wang Zhen Xing. 2010

[2]Optimization of Catechin Nanoliposomes and Evaluation of Their Antioxidant Activity and Cytotoxicity. Wu, Zhipan,Guan, Rongfa,Liu, Mingqi,Xiao, Chaogeng,Lyu, Fei,Cao, Guozhou,Gao, Jianguo. 2017

[3]XPS and SEM Spectroscopy Study of Hyperdispersant on Atrazine Surface. Xu Yan,Ma Chao,Zhang Ping,Cai Meng-ling,Wu Xue-min,Sun Bao-li. 2011

[4]In vitro Antimicrobial Activities and Mechanism of 1-Octen-3-ol against Food-related Bacteria and Pathogenic Fungi. Li, Qiang,Chen, Zuqin,Xiong, Chuan,Li, Qiang,Huang, Wenli,Li, Shuhong,Chen, Cheng. 2017

[5]Synthesis and properties study of carboxymethyl cassava starch. Qiu, HY,He, LM. 1999

[6]EFFECTS OF SILICON ON YIELD CONTRIBUTING PARAMETERS AND ITS ACCUMULATION IN ABAXIAL EPIDERMIS OF SUGARCANE LEAF BLADES USING ENERGY DISPERSIVE X-RAY ANALYSIS. Li, Yang-Rui,Dalvi, V. A.,Huang, Hai-Rong.

[7]Cell Wall Disruption of Rape Bee Pollen Treated with Combination of Protamex Hydrolysis and Ultrasonication. Dong, Jie,Gao, Kun,Wang, Kai,Xu, Xiang,Zhang, Hongcheng,Wang, Kai,Dong, Jie,Xu, Xiang,Zhang, Hongcheng.

[8]Bioassay and Scanning Electron Microscopic Observations Reveal High Virulence of Entomopathogenic Fungus, Beauveria bassiana, on the Onion Maggot (Diptera: Anthomyiidae) Adults. Wu, Shengyong,Xing, Zhenlong,Lei, Zhongren,Wang, Xiaoqing,Lei, Zhongren.

[9]Granule Size and Distribution of Raw and Germinated Oat Starch in Solid State and Ethanol Solution. Tian Binqiang,Tian Binqiang,Xie Bijun,Wang Chao,Wang Lan.

[10]Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Zheng, Ruilun,Xiao, Bo,Chen, Zheng,Wang, Xiaohui,Huang, Yizong,Sun, Guoxin,Cai, Chao. 2013

[11]Biochar Improves Sugarcane Seedling Root and Soil Properties Under a Pot Experiment. Li, Yangrui,Yang, Liu,Li, Yangrui,Yang, Liu,Li, Yangrui,Liao, Fen,Huang, Min,Yang, Litao. 2015

[12]The effects of biochar and hoggery biogas slurry on fluvo-aquic soil physical and hydraulic properties: a field study of four consecutive wheat-maize rotations. Du, Zhenjie,Chen, Xiaomin,Nan, Jiangkuan,Deng, Jianqiang,Du, Zhenjie,Qi, Xuebin,Li, Zhongyang,Du, Zhenjie,Qi, Xuebin,Li, Zhongyang. 2016

[13]Comparative Effects of Biochar, Slag and Ferrous-Mn Ore on Lead and Cadmium Immobilization in Soil. Mehmood, Sajid,Rizwan, Muhammad,Bashir, Saqib,Aziz, Omar,Yong, Li Zhe,Dai, Zhihua,Tu, Shuxin,Ditta, Allah,Akmal, Muhammad,Ahmed, Waqas,Adeel, Muhammad,Imtiaz, Muhammad. 2018

[14]Effects of Biochar Amendment on Chloropicrin Adsorption and Degradation in Soil. Wang, Qiuxia,Yan, Dongdong,Fang, Wensheng,Mao, Liangang,Li, Yuan,Ouyang, Canbin,Guo, Meixia,Cao, Aocheng,Wang, Dong. 2016

[15]The Effect of Two Types of Biochars on the Efficacy, Emission, Degradation, and Adsorption of the Fumigant Methyl Isothiocyanate. Cao, Aocheng,Yan, Dongdong,Han, Dawei,Huang, Bin,Li, Jun,Liu, Xiaoman,Guo, Meixia,Wang, Qiuxia. 2017

[16]Population and community structure shifts of ammonia oxidizers after four-year successive biochar application to agricultural acidic and alkaline soils. He, Lili,Bi, Yucui,Zhao, Jin,Zhao, Xu,Wang, Shenqiang,Xing, Guangxi,He, Lili,Pittelkow, Cameron M.. 2018

[17]Preparation and Characterization of Camellia Shell Biochar. Qin, Zuodong,Li, Zhizhang,Wang, Meifeng,Duns, Gregory J.,He, Fulin,Luo, Xiaofang,Qin, Zuodong,Qin, Zuodong,Wang, Jianhua,Yang, Shengmao,Wang, Yuying,Zeng, Weixi,Yang, Shengmao,Wang, Yuying,Zeng, Weixi. 2016

[18]Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria. He, Shiying,Duan, Jingjing,Feng, Yanfang,Yang, Bei,Yang, Linzhang,Zhong, Linghao. 2017

[19]Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Li, Helian,Qu, Ronghui,Li, Chao,Guo, Weilin,Han, Xuemei,He, Fang,Ma, Yibing,Li, Helian,Xing, Baoshan,Ma, Yibing.

[20]LS-SVM data mining analysis: how does biochar influence soil net nitrogen mineralization in the field?. Deng, Jianqiang,Chen, Xiaomin,Nan, Jiangkuan,Du, Zhenjie,Deng, Jianqiang,Wang, Rui,Du, Zhenjie.

作者其他论文 更多>>