Genetic overlap of QTL associated with low-temperature tolerance at germination and seedling stage using BILs in soybean

文献类型: 外文期刊

第一作者: Zhang, Wen-Bo

作者: Zhang, Wen-Bo;Jiang, Hong-wei;Liu, Chun-Yan;Hu, Guo-Hua;Zhang, Wen-Bo;Jiang, Hong-wei;Xin, Da-Wei;Chen, Qing-Shan;Hu, Guo-Hua;Li, Can-Dong;Zhang, Wen-Bo;Qiu, Peng-Cheng;Chen, Fei-Long

作者机构:

关键词: Soybean;backcross introgression lines;low-temperature tolerance;germination and seedling stage;genetic overlap

期刊名称:CANADIAN JOURNAL OF PLANT SCIENCE ( 影响因子:1.018; 五年影响因子:1.242 )

ISSN: 0008-4220

年卷期: 2012 年 92 卷 7 期

页码:

收录情况: SCI

摘要: Zhang, W.-B., Jiang, H.-W., Qiu, P.-C., Liu, C.-Y., Chen, F.-L., Xin, D.-W., Li, C.-D., Hu, G.-H. and Chen, Q.-S. 2012. Genetic overlap of QTL associated with low-temperature tolerance at germination and seedling stage using BILs in soybean. Can. J. Plant Sci. 92: 1381-1388. Low temperature is one of the critical environmental factors that limit agricultural production worldwide. In northeast China soybean frequently suffers low temperature stress, especially at germination stage and seedling stage. The most effective way to solve this problem is to breed cultivars with low-temperature tolerance. A set of advanced backcross introgression lines was constructed with Hongfeng 11 as recurrent parent, which was a local variety in Heilongjiang province, and Harosoy as donor parent, which was introduced from Canada. Their BC2F4 lines were screened in low-temperature condition at the two stages, and 41 transgressive lines were selected out at germination stage and 45 lines at seedling stage. Sixty-four and fifty-one pairs of simple sequence repeat primers with fine polymorphism were used for genotyping the selected population and random population at the two stages, respectively. Related quantitative trait loci (QTL) were obtained by chi-test and ANOVA analysis with genotypic and phenotypic data. Finally, 25 QTL at germination stage and 13 QTL at seedling stage were mapped. Among them, 10 QTL overlapped between two stages, which showed a partial genetic crossover on low-temperature tolerance stages in soybean. This would play an important role in marker-assisted selection for breeding elite variety with low-temperature tolerance at both stages.

分类号:

  • 相关文献

[1]Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean. Zhang, Wen Bo,Xin, Da Wei,Chen, Qing Shan,Zhang, Wen Bo,Jiang, Hong Wei,Liu, Chun Yan,Hu, Guo Hua,Zhang, Wen Bo,Qiu, Peng Cheng,Li, Can Dong,Hu, Guo Hua.

[2]Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Zang JinPing,Sun Yong,Wang Yun,Yang Jing,Li Fang,Zhou YongLi,Zhu LingHua,Xu JianLong,Jessica, Reys,Mohammadhosein, Fotokian,Li ZhiKang.

[3]Novel loci for field resistance to black-streaked dwarf and stripe viruses identified in a set of reciprocal introgression lines of rice (Oryza sativa L.). Zhai, Huqu,Zhu, Linghua,Uzokwe, Veronica N. E.,Xu, Jianlong,Li, Zhikang,Yang, Jie,Zhong, Weigong,Fan, Fangjun,Yang, Jinhuan,Wang, Jun,Zhu, Jinyan,Ali, A. Jauhar,Li, Zhikang. 2012

[4]Genetic diversity and aggressiveness of Fusarium species isolated from soybean in Alberta, Canada. Zhou, Qixing,Chang, Kan-Fa,Hwang, Sheau-Fang,Fu, Heting,Turnbull, George D.,Li, Nana,Strelkov, Stephen E.,Conner, Robert L.,McLaren, Debra L.,Harding, Michael W.. 2018

[5]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[6]Geographical distribution of GmTfl1 alleles in Chinese soybean varieties. Liu, Guifeng,Zhao, Lin,Qiu, Lijuan,Liu, Ying,Chang, Ruzhen,Guan, Rongxia,Qiu, Lijuan,Averitt, Benjamin J.,Zhang, Bo,Ma, Yansong,Luan, Xiaoyan. 2015

[7]Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. Li, Pan-Song,Chai, Shou-Cheng,Li, Pan-Song,Yu, Tai-Fei,He, Guan-Hua,Chen, Ming,Zhou, Yong-Bin,Xu, Zhao-Shi,Ma, You-Zhi. 2014

[8]Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Song, Zhang-yue,Tian, Jing-luan,Fu, Wei-zhe,Li, Lin,Lu, Ling-hong,Zhou, Lian,Shou, Hui-xia,Shan, Zhi-hui,Tang, Gui-xiang. 2013

[9]A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering. Yang DeGuang,Zhao Wang,Meng YingYing,Li HongYu,Liu Bin. 2015

[10]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[11]Purification and characterization of beta-glucosidase from newly isolated Aspergillus sp MT-0204. Qi, Bin,Liu, Xianjin,Qi, Bin,Wang, Limei. 2009

[12]The Soybean Basic Helix-Loop-Helix Transcription Factor ORG3-Like Enhances Cadmium Tolerance via Increased Iron and Reduced Cadmium Uptake and Transport from Roots to Shoots. Xu, Zhaolong,Liu, Xiaoqing,He, Xiaolan,Xu, Ling,Huang, Yihong,Shao, Hongbo,Zhang, Dayong,Shao, Hongbo,Tang, Boping,Ma, Hongxiang. 2017

[13]Aspects of soybean insect resistance breeding in China. Wang, S. 2004

[14]QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.). Liang Hui-zhen,Yu Yong-liang,Wang Shu-feng,Lian Yun,Wang Ting-feng,Wei Yan-li,Gong Peng-tao,Fang Xuan-jun,Liu Xue-yi,Zhang Meng-chen. 2010

[15]RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Yang, Xiangdong,Niu, Lu,Zhang, Wei,Yang, Jing,Xing, Guojie,He, Hongli,Guo, Dongquan,Du, Qian,Qian, Xueyan,Yao, Yao,Li, Qiyun,Dong, Yingshan. 2018

[16]Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Zhang, L.,Wang, Y. M.,Yuan, C. P.,Zhang, Y. Y.,Li, H. Y.,Dong, Y. S.,Zhao, H. K.,Yan, X. F.,Li, Q. Y.. 2015

[17]Optimal Concentration of Zinc Sulfate in Foliar Spray to Alleviate Salinity Stress in Glycine soja. Jiang, W.,Xu, H. L.,Lu, H. F.,Jiang, W.,Sun, X. H.,Mantri, N.. 2014

[18]Allelism and molecular mapping of soybean necrotic root mutants. Palmer, Reid G.,Zhang, Lei,Huang, Zhiping. 2008

[19]Detection of Hirsutella spp. and Pasteuria sp parasitizing second-stage juveniles of Heterodera glycines in soybean fields in China. Ma, R,Liu, XZ,Jian, H,Li, SD. 2005

[20]Fine mapping and identification of the soybean R-SC4 resistance candidate gene to soybean mosaic virus. Wang, Dagang,Ma, Ying,Liu, Ning,Yang, Zhonglu,Zheng, Guijie,Zhi, Haijian,Wang, Dagang. 2011

作者其他论文 更多>>